Skip to main content
Log in

Geometric Hamiltonian formalism for reparameterization-invariant theories with higher derivatives

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider reparameterization-invariant Lagrangian theories with higher derivatives, investigate the geometric structures behind these theories, and construct the Hamiltonian formalism geometrically. We present the Legendre transformation formula for such systems, which differs from the usual one. We show that the phase bundle, i.e., the image of the Legendre transformation, is a submanifold of a certain cotangent bundle, and this submanifold is always odd-dimensional in this construction. Therefore, the canonical symplectic 2-form of the ambient cotangent bundle generates a field on the phase bundle of null directions of its restriction. We show that the integral lines of this field project to the extremals of the action on the configuration manifold. This means that the obtained field is a Hamiltonian field. We write the corresponding Hamilton equations in terms of the generalized Nambu bracket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnol’d, Mathematical Methods of Classical Mechanics [in Russian], Editorial URSS, Moscow (2003); English transl. prev. ed. (Grad. Texts in Math., Vol. 60), Springer, New York (1978).

    Google Scholar 

  2. V. I. Arnol’d and A. B. Givental’, Symplectic Geometry [in Russian], RKhD, Izhevsk (2000); English transl. prev. ed.: “Symplectic geometry,” in: Dynamical Systems IV (Encycl. Math. Sci., Vol. 4), Springer, Berlin (2001).

    Google Scholar 

  3. A. Kushner, V. Lychagin, and V. Rubtsov, Contact Geometry and Nonlinear Differential Equations (Encycl. Math. Appl., Vol. 101), Cambridge Univ. Press, Cambridge (2007).

    MATH  Google Scholar 

  4. R. Miron, D. Hrimiuc, H. Shimada, and S. V. Sabau, The Geometry of Hamilton and Lagrange Spaces (Fund. Theories Phys., Vol. 118), Kluwer, Dordrecht (2001).

    MATH  Google Scholar 

  5. A. Morozov, “Hamiltonian formalism in the presence of higher derivatives,” arXiv:0712.0946v3 [hep-th] (2007).

  6. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry: Methods and Applications [in Russian], Vol. 2, The Geometry and Topology of Manifolds, Editorial URSS, Moscow (2001); English transl. prev. ed. (Grad. Texts in Math., Vol. 104), Springer, New York (1985).

    Google Scholar 

  7. D. M. Gitman and I. V. Tyutin, Canonical Quantization of Fields with Constraints [in Russian], Nauka, Moscow (1986); English transl.: Quantization of Fields with Constraints, Springer, Berlin (1990).

    MATH  Google Scholar 

  8. D. Fairlie, J. Govaerts, and A. Morozov, Nucl. Phys. B, 373, 214–232 (1992); arXiv:hep-th/9110022v1 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  9. L. Takhtajan, Comm. Math. Phys., 160, 295–315 (1994); arXiv:hep-th/9301111v1 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. T. Curtright and C. Zachos, Phys. Rev. D, 68, 085001 (2003); arXiv:hep-th/0212267v3 (2002).

  11. C. Rovelli, Quantum Gravity, Cambridge Univ. Press, Cambridge (2004).

    MATH  Google Scholar 

  12. J. Muñoz Masqué and L. M. Pozo Coronado, J. Phys. A, 31, 6225–6242 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Mironov and A. Morozov, Theor. Math. Phys., 156, 1209–1217 (2008); arXiv:hep-th/0703097v1 (2007).

    Article  MATH  Google Scholar 

  14. A. Mironov and A. Morozov, “On the problem of radiation friction beyond 4 and 6 dimensions,” arXiv: 0710.5676v1 [hep-th] (2007).

  15. D. Galakhov, JETP Lett., 87, 452–458 (2008); arXiv:0710.5688v3 [hep-th] (2007).

    Article  ADS  Google Scholar 

  16. M. S. Plyushchay, Internat. J. Mod. Phys. A, 4, 3851–3865 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  17. L. D. Landau and E. M. Lifshits, Theoretical Physics [in Russian], Vol. 2, Field Theory, Fizmatlit, Moscow (2001); English transl. prev. ed.: The Classical Theory of Fields, Addison-Wesley, Cambridge, Mass. (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Dunin-Barkowski.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 158, No. 1, pp. 72–97, January, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunin-Barkowski, P.I., Sleptsov, A.V. Geometric Hamiltonian formalism for reparameterization-invariant theories with higher derivatives. Theor Math Phys 158, 61–81 (2009). https://doi.org/10.1007/s11232-009-0005-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-009-0005-7

Keywords

Navigation