Skip to main content
Log in

Phylogenetic relationships of Steinernema Travassos, 1927 (Nematoda: Cephalobina: Steinernematidae) based on nuclear, mitochondrial and morphological data

  • Published:
Systematic Parasitology Aims and scope Submit manuscript

Abstract

Entomopathogenic nematodes of the genus Steinernema are lethal parasites of insects that are used as biological control agents of several lepidopteran, dipteran and coleopteran pests. Phylogenetic relationships among 25 Steinernema species were estimated using nucleotide sequences from three genes and 22 morphological characters. Parsimony analysis of 28S (LSU) sequences yielded a well-resolved phylogenetic hypothesis with reliable bootstrap support for 13 clades. Parsimony analysis of mitochondrial DNA sequences (12S rDNA and cox 1 genes) yielded phylogenetic trees with a lower consistency index than for LSU sequences, and with fewer reliably supported clades. Combined phylogenetic analysis of the 3-gene dataset by parsimony and Bayesian methods yielded well-resolved and highly similar trees. Bayesian posterior probabilities were high for most clades; bootstrap (parsimony) support was reliable for approximately half of the internal nodes. Parsimony analysis of the morphological dataset yielded a poorly resolved tree, whereas total evidence analysis (molecular plus morphological data) yielded a phylogenetic hypothesis consistent with, but less resolved than trees inferred from combined molecular data. Parsimony mapping of morphological characters on the 3-gene trees showed that most structural features of steinernematids are highly homoplastic. The distribution of nematode foraging strategies on these trees predicts that S. hermaphroditum, S. diaprepesi and S. longicaudum (US isolate) have cruise forager behaviours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams B.J. (1998) Species concepts and the evolutionary paradigm in modern nematology. Journal of Nematology 30: 1–21

    PubMed  CAS  Google Scholar 

  • Alfaro M.E., Zoller S., Lutzoni F. (2003) Bayes or Bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Molecular Biology and Evolution 20:255–266

    Article  PubMed  CAS  Google Scholar 

  • Anderson T.J.C., Komuniecki R., Komuniecki P.R., Jaenike J. (1995) Are mitochondria inherited paternally in Ascaris? International Journal for Parasitology 25:1001–1004

    Article  PubMed  CAS  Google Scholar 

  • Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K. (1989) Short protocols in molecular biology. New York, New York: Greene Publishing Associates and Wiley-Interscience, 387 pp

    Google Scholar 

  • Baldwin J.G., De Ley I.T., Mundo-Ocampo M., De Ley P., Nadler S.A., Gebre M. (2001) Acromoldavicus mojavicus n sp (Nematoda: Cephaloboidea) from the Mojave Desert, California. Nematology 3:343–353

    Article  Google Scholar 

  • Berry V., Gascuel O. (1996) On the interpretation of bootstrap trees: appropriate threshold of clade selection and induced gain. Molecular Biology and Evolution, 13:999–1011

    CAS  Google Scholar 

  • Blouin M.S., Yowell C.A., Courtney C.H., Dame J.B. (1998) Substitution bias, rapid saturation, and the use of mtDNA for nematode systematics. Molecular Biology and Evolution, 15:1719–1727

    PubMed  CAS  Google Scholar 

  • Boemare N.E., Akhurst R.J., Mourant R.G. (1993) DNA relatedness between Xenorhabdus spp, (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus, new genus. International Journal of Systematic Bacteriology, 43:249–255

    Article  CAS  Google Scholar 

  • Brown I.M., Gaugler R. (1997) Temperature and humidity influence emergence and survival of entomopathogenic nematodes. Nematologica, 43:363–375

    Article  Google Scholar 

  • Campbell J.F., Gaugler R.R. (1997) Inter-specific variation in entomopathogenic nematode foraging strategy: dichotomy or variation along a continuum? Fundamental and Applied Nematology, 20:393–398

    Google Scholar 

  • Campbell J.F., Lewis E.E., Stock S.P., Nadler S.A., Kaya H.K. (2003) Evolution of host search strategies in entomopathogenic nematodes. Journal of Nematology, 35:142–145

    PubMed  CAS  Google Scholar 

  • de Doucet M., Bertolotti M.A., Giayetto A.L., Miranda M.B. (1999) Host range, specificity, and virulence of Steinernema feltiae, Steinernema rarum, and Heterorhabditis bacteriophora (Steinernematidae and Heterorhabditidae) from Argentina. Journal of Invertebrate Pathology, 73:237–242

    Article  PubMed  Google Scholar 

  • Eernisse D.J., Kluge A.G. (1993) Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology. Molecular Biology and Evolution, 10:1170–1195

    PubMed  CAS  Google Scholar 

  • Elawad S., Ahmad W., Reid A.P. (1997) Steinernema abbasi sp. n. (Nematoda: Steinernematidae) from the Sultanate of Oman. Fundamental and applied Nematology, 20:435–442

    Google Scholar 

  • Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39:783–791

    Article  Google Scholar 

  • Forst S., Nealson K. (1996) Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiological Reviews, 60:21–43

    PubMed  CAS  Google Scholar 

  • Freed R., Eisensmith S.P., Goetz S., Reicosky R., Smail V.W., Wolberg P. (1991) User’s guide to MSTAT-C: A software program for the design, management, and analysis of agronomic research experiments. East Lansing, Michigan: Michigan State University

    Google Scholar 

  • Grenier E., Bonifassi E., Abad P., Laumond C. (1996) Use of species-specific satellite DNAs as diagnostic probes in the identification of Steinernematidae and Heterorhabditidae entomopathogenic nematodes. Parasitology, 113:483–489

    PubMed  CAS  Google Scholar 

  • Griffin C.T., O’Callaghan K.M., Dix I. (2001) A self-fertile species of Steinernema from Indonesia: further evidence of convergent evolution amongst entomopathogenic nematodes? Parasitology 122:181–186

    Article  PubMed  CAS  Google Scholar 

  • Hominick W.M., Briscoe B.R., Del Pino F.G., Heng J., Hunt D.J., Kozodoy E., Mracek Z., Nguyen K.B., Reid A.P., Spiridonov S., Stock P., Sturhan D., Waturu C., Yoshida M. (1997) Biosystematics of entomopathogenic nematodes: current status, protocols and definitions. Journal of Helminthology 71:271–298

    Article  PubMed  Google Scholar 

  • Hominick W.M., Reid A.P., Bohan D.A., Briscoe B.R. (1996) Entomopathogenic nematodes: Biodiversity, geographical distribution and the convention on biological diversity. Biocontrol Science and Technology 6:317–331

    Article  Google Scholar 

  • Huelsenbeck J.P., Ronquist F. (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics, 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Joyce S.A., Griffin C.T., Burnell A.M. (1994) The use of isoelectric focusing and polyacrylamide gel electrophoresis of soluble proteins in the taxonomy of the genus Heterorhabditis (Nematoda: Heterorhabditidae). Nematologica, 40:601–612

    Article  Google Scholar 

  • Kaya H.K., Stock S.P. (1997) Techniques in insect nematology. In: Lacey L.A. (Ed.) Manual of techniques in insect pathology. San Diego: Academic Press, pp. 281–324

    Google Scholar 

  • Kluge A.G. (1998) Total evidence or taxonomic congruence: cladistics or consensus classification. Cladistics 14:151–158

    Article  Google Scholar 

  • Liu J., Berry R.E. (1995) Determination of PCR conditions of RAPD analysis in entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae). Journal of Invertebrate Pathology, 65:79–81

    Article  PubMed  CAS  Google Scholar 

  • Liu J., Berry R.E. (1996) Phylogenetic analysis of the genus Steinernema by morphological characters and randomly amplified polymorphic DNA fragments. Fundamental and Applied Nematology, 19:463–469

    Google Scholar 

  • Liu J., Berry R.E., Moldenke A.F. (1997) Phylogenetic relationships of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) inferred from partial 18S rRNA gene sequences. Journal of Invertebrate Pathology, 69:246–252

    Article  PubMed  CAS  Google Scholar 

  • Liu J., Berry R.E., Blouin M.S. (1999) Molecular differentiation and phylogeny of entomopathogenic nematodes (Rhabditida: Heterorhabditidae) based on ND4 gene sequences of mitochondria DNA. Journal of Parasitology, 85:709–715

    Article  PubMed  CAS  Google Scholar 

  • Loytynoja A., Milinkovitch M.C. (2003) A hidden Markov model for progressive multiple alignment. Bioinformatics, 19:1505–1513

    Article  PubMed  CAS  Google Scholar 

  • Maddison D.R., Maddison W.P. (2000) MacClade 4: Analysis of phylogeny and character evolution. Sunderland, Massachusetts: Sinauer Associates Inc

    Google Scholar 

  • Mrácek Z., Bednarek A. (1991) The morphology of the lateral field of infective juveniles of entomopathogenic nematodes of the family Steinernematidae (Rhabditida). Nematologica, 37:63–71

    Article  Google Scholar 

  • Nadler S.A. (1995) Advantages and disadvantages of molecular phylogenetics: a case study of ascaridoid nematodes. Journal of Nematology 27:423–432

    PubMed  CAS  Google Scholar 

  • Nadler S.A. (2002) Species delimitation and nematode biodiversity: phylogenies rule. Nematology 4:615–625

    Article  Google Scholar 

  • Nadler S.A., Carreno R.A., Adams B.J., Kinde H., Baldwin J.G., Mundo-Ocampo M. (2003) Molecular phylogenetics and diagnosis of soil and clinical isolates of Halicephalobus gingivalis (Nematoda: Cephalobina: Panagrolaimoidea), an opportunistic pathogen of horses. International Journal for Parasitology, 33:1115–1125

    Article  PubMed  CAS  Google Scholar 

  • Nadler S.A., Hudspeth D.S.S. (2000) Phylogeny of the Ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: hypotheses of structural and sequence evolution. Journal of Parasitology, 86:380–393

    Article  PubMed  CAS  Google Scholar 

  • Nguyen K.B., Adams B.J. (2003) SEM and systematic studies of Steinernema abbasi Elawad et al., 1997, and S. riobrave Cabanillas et al., 1994 (Rhabditida: Steinernematidae). Zootaxa, 179:1–10

    Google Scholar 

  • Nguyen K.B., Duncan L.W. (2002) Steinernema diaprepesi n. sp. (Rhabditida: Steinernematidae), a parasite of the citrus root weevil Diaprepes abbreviatus (L) (Coleoptera: Curculionidae). Journal of Nematology, 34:159–170

    CAS  PubMed  Google Scholar 

  • Nguyen K.B., Maruniak J., Adams B.J. (2001) Diagnostic and phylogenetic utility of the rDNA internal transcribed spacer sequences of Steinernema. Journal of Nematology, 33:73–82

    CAS  PubMed  Google Scholar 

  • Nguyen K.B., Smart G.C., Jr (1997) Scanning electron microscope studies of spicules and gubernacula of Steinernema spp (Nemata: Steinernematidae). Nematologica, 43:465–480

    Article  Google Scholar 

  • Poinar G.O., Jr (1990) Taxonomy and biology of Steinernematidae and Heterorhabditidae. In: Gaugler R., Kaya H.K.K. (Eds) Entomopathogenic nematodes in biological control. Boca Raton, Florida: CRC Press, pp. 23–61

    Google Scholar 

  • Poinar G.O., Jr (1993) Origins and phylogenetic relationships of the entomophilic rhabditids Heterorhabditis and Steinernema. Fundamental and Applied Nematology, 16:333–338

    Google Scholar 

  • Posada D., Crandall K.A. (1998) MODELTEST: Testing the model of DNA substitution. Bioinformatics, 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Reid A.P. (1994) Molecular taxonomy of Steinernema. In: Burnell A.M., Ehlers R.-U., Mason J.P. (Eds) Genetics of entomopathogenic nematode-bacterium complexes. Luxembourg City: European Commission Luxembourg, pp. 49–58

    Google Scholar 

  • Reid A.P., Hominick W.M. (1993) Cloning of the rDNA repeat unit from a British entomopathogenic nematode (Steinernematidae) and its potentials for species identification. Parasitology, 107:529–536

    Article  CAS  Google Scholar 

  • Reid A.P., Hominick W.M., Briscoe B.R. (1997) Molecular taxonomy and phylogeny of entomopathogenic nematode species (Rhabditida: Steinernematidae) by RFLP analysis of the ITS region of the ribosomal DNA repeat unit. Systematic Parasitology, 37:187–193

    Article  Google Scholar 

  • Sanderson M.J., Donoghuer M.J., Piel W., Eriksson T. (1994) TreeBASE: A prototype database of phylogenetic analyses and an interactive tool for browsing the phylogeny of life. American Journal of Botany, 81:183

    Article  Google Scholar 

  • Sicard M., Ferdy J.B., Pages S., Le Brun N., Godelle B., Boemare N., Moulia C. (2004) When mutualists are pathogens: an experimental study of the symbioses between Steinernema (entomopathogenic nematodes) and Xenorhabdus (bacteria). Journal of Evolutionary Biology, 17:985–993

    Article  PubMed  CAS  Google Scholar 

  • Simoes N., Sosa J.S. (1996) Pathogenicity and host specificity of entomopathogenic nematodes. Biocontrol Science and Technology 6:403–411

    Article  Google Scholar 

  • Simon C. (1983) A new coding procedure for morphometric data with an example from periodical cicada wing veins. In: Felsenstein J. (Ed.) Numerical Taxonomy. Berlin: Springer-Verlag, pp. 378–383

    Google Scholar 

  • Spiridonov S.E., Reid A.P., Podrucka K., Subbotin S.A., Moens M. (2004) Phylogenetic relationships within the genus Steinernema (Nematoda: Rhabditida) as inferred from analyses of sequences of the ITS1–5.8S-ITS2 region of rDNA and morphological features. Nematology 6:547–566

    Article  CAS  Google Scholar 

  • Stock P. (2005) Insect pathogenic nematodes: from lab curiosities to model organisms. Journal of Invertebrate Pathology, (in press)

  • Stock P., Koppenhöfer A.M. (2003) Steinernema scarabaei n. sp. (Rhabditida: Steinernematidae), a natural pathogen of scarab beetle larvae (Coleoptera: Scarabaeidae) from New Jersey. Nematology 5:191–204

    Article  Google Scholar 

  • Stock S.P., Campbell J.F., Nadler S.A. (2001) Phylogeny of Steinernema travassos, 1927 (Cephalobina: Steinernematidae) inferred from ribosomal DNA sequences and morphological characters. Journal of Parasitology, 87:877–889

    Article  PubMed  CAS  Google Scholar 

  • Stock S.P., Griffin C.T., Chaerani R. (2004) Morphological and molecular characterisation of Steinernema hermaphroditum n. sp (Nematoda: Steinernematidae), an entomopathogenic nematode from Indonesia, and its phylogenetic relationships with other members of the genus. Nematology 6:401–412

    Article  Google Scholar 

  • Stock S.P., Somsook V., Reid A.P. (1998) Steinernema siamkayai n. sp. (Rhabditida: Steinernematidae), an entomopathogenic nematode from Thailand. Systematic Parasitology 41:105–113

    Article  Google Scholar 

  • Swofford D.L. (1998) PAUP*. Phylogenetic Anaylsis Using Parsimony (*and Other Methods). Version 4. Sunderland, Massachusetts: Sinauer Associates, Inc

    Google Scholar 

  • Szalanski A.L., Taylor D.B., Mullin P.G. (2000) Assessing nuclear and mitochondrial DNA sequence variation within Steinernema (Rhabditida: Steinernematidae). Journal of Nematology, 32:229–233

    CAS  PubMed  Google Scholar 

  • Tallosi B., Peters A., Ehlers R.-U. (1994) Steinernema bicornutum (Rhabditida: Steinernematidae) from Vojvodina, Yugoslavia. Russian Journal of Nematology 3:71–80

    Google Scholar 

  • Waturu C.N., Hunt D.J., Reid A.P. (1997) Steinernema karii sp. n. (Nematoda: Steinernematidae), a new entomopathogenic nematode from Kenya. International Journal of Nematology 7: 68–75

    Google Scholar 

Download references

Acknowledgements

We thank D. Hyman, D. Jackson, R. Rhode and A. Smythe for project assistance. We also thank our colleagues for providing nematode isolates. This research was supported by NSF PEET grant DEB-9712355 and NSF Tree of Life grant DEB-0228692.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Nadler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadler, S.A., Bolotin, E. & Stock, S.P. Phylogenetic relationships of Steinernema Travassos, 1927 (Nematoda: Cephalobina: Steinernematidae) based on nuclear, mitochondrial and morphological data. Syst Parasitol 63, 159–179 (2006). https://doi.org/10.1007/s11230-005-9009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11230-005-9009-3

Keywords

Navigation