Skip to main content
Log in

Intuitionistic mereology

  • S.I.: Mereology and Identity
  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Two mereological theories are presented based on a primitive apartness relation along with binary relations of mereological excess and weak excess, respectively. It is shown that both theories are acceptable from the standpoint of constructive reasoning while remaining faithful to the spirit of classical mereology. The two theories are then compared and assessed with regard to their extensional import.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Actually there is some ambiguity also in what counts as classical mereology tout court. Here we are thinking of the familiar theory based on classical first-order logic (Varzi 2016). Historically, however, this theory came to us in different guises. Leśniewski’s ‘Mereologia’ (1916, 1927–1931) was based on Ontology and Protothetic; Leonard and Goodman’s ‘Calculus of Individuals’ (1940) made use of quantification over classes. Such systems are not elementarily axiomatizable (Pietruszczak 2015) and are, therefore, strictly stronger than their first-order approximation, which is due to Goodman (1951).

  2. There is a literature on so-called ‘Heyting mereologies’, as in Forrest (2002), Mormann (2013), and Russell (2016). Despite the name, however, such theories are based on classical logic and differ from classical mereology with regard to their proper axioms (they lack Weak Supplementation), so they are non-classical in the first sense introduced above. Essentially, they deliver a parthood relation whose structure is not a Boolean but a Heyting algebra (about which see Johnstone 1982).

  3. For a review of the arguments, see Lando (2017, pt. ii). For an explicit defense of extensionality on behalf of classical mereology, see Varzi (2008).

  4. In Dutch: ‘verwijderd’, ‘plaatselijk verschillend’ (Brouwer 1923, §2); in German: ‘entfernt’ (Brouwer 1925, p. 254), ‘örtlich verschieden’ (Brouwer 1919, p. 3).

  5. Similar axioms for constructive ordering relations may be found in Bridges (1999); cf. also Scott (1968, §1).

  6. Classically, overlap is defined as sharing of a common part, and here we shall go along with that definition. We leave it to future work to investigate the possibility of adopting a notion of overlap with greater constructive appeal, such as the intuitionistic overlap relation developed by Ciraulo (2013) and Ciraulo et al. (2013) in the context of Sambin’s ‘overlap algebra’ (Sambin Forthcoming).

  7. We assume familiarity with Kripke models for intuitionistic logic, referring to Kripke’s original article (Kripke 1965) and to Troelstra and van Dalen (1988) for a systematic presentation. Specific applications to intuitionistic theories may be found in Smorynski (1973) and, with special reference to order theories, in Greenleaf (1978).

  8. See the original formulation in Simons (1987); the formulation with \(\leqslant \) is from Casati and Varzi (1999). See also Hovda (2009) and Varzi (2016, §3.1).

  9. Thanks to a referee for pressing us on this point.

  10. This result also follows from Theorem 8 below.

  11. See Varzi (2016, §3.2). A notable exception is Leonard and Goodman’s ‘Calculus of Individuals’ (1940), which is based on a primitive of mereological disjointness and includes EO (or, rather, its equivalent formulation in terms of disjointness) as an axiom. See also Niebergall (2011) for a systematic overview of classical mereology based on overlap, following Goodman (1951).

  12. Some authors actually identify Strong Supplementation with OP; see e.g. Hovda (2016, p. 187).

  13. Here, again, we are indebted to a referee for bringing this point to our attention.

  14. Classical mereology is not only extensional; it is also closed under unrestricted mereological fusion. In this paper we have not discussed any notion of fusion, which we leave for future work. Some indications on how to accommodate fusions constructively may be found in von Plato’s work and in Baroni’s work on constructive suprema (Baroni 2005).

References

  • Baroni, M. A. (2005). Constructive suprema. Journal of Universal Computer Science, 11, 1865–1877.

    Google Scholar 

  • Bridges, D. (1999). Constructive mathematics: A foundation for computable analysis. Theoretical Computer Science, 219, 95–109.

    Article  Google Scholar 

  • Brouwer, L. E. J. (1919). Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Zweiter Teil: Theorie der Punktmengen. Koninklijke Akademie van Wetenschappen te Amsterdam. Verhandelingen (Eerste Sectie), 7, 1–33.

    Google Scholar 

  • Brouwer, L. E. J. (1923). Intuïitionistische splitsing van mathematische grondbegrippen. Koninklijke Akademie van Wetenschappen te Amsterdam, Verslagen, 32, 877–880.

    Google Scholar 

  • Brouwer, L. E. J. (1925). Intuitionistische Zerlegung mathematischer Grundbegriffe. Jahresbericht der Deutschen Mathematiker-Vereinigung, 33, 251–256.

    Google Scholar 

  • Casati, R., & Varzi, A . C. (1999). Parts and places: The structures of spatial representation. Cambridge (MA): MIT Press.

    Google Scholar 

  • Ciraulo, F. (2013). Intuitionistic overlap structures. Logic and Logical Philosophy, 22, 201–212.

    Article  Google Scholar 

  • Ciraulo, F., Maietti, M. E., & Toto, P. (2013). Constructive version of Boolean algebra. Logic Journal of the IJPL, 21, 44–62.

    Article  Google Scholar 

  • Cotnoir, A. J. (2010). Anti-symmetry and non-extensional mereology. The Philosophical Quarterly, 60, 396–405.

    Article  Google Scholar 

  • Cotnoir, A. J., & Bacon, A. (2012). Non-wellfounded mereology. The Review of Symbolic Logic, 5, 187–204.

    Article  Google Scholar 

  • Eberle, R. A. (1970). Nominalistic systems. Dordrecht: Reidel.

    Book  Google Scholar 

  • Forrest, P. (2002). Nonclassical mereology and its application to sets. Notre Dame Journal of Formal Logic, 43, 79–94.

    Article  Google Scholar 

  • Gentzen, G. (1933). Über das Verhältnis zwischen intuitionistischer und klassischer Logik. Published posthumously in Archiv für mathematische Logik und Grundlagenforschung, 16, 119–132, 1974.

  • Gentzen, G. (1935). Untersuchungen über das logische Schliessen. Mathematische Zeitschrift, 39, 176–210 and 405–431.

  • Gödel, K. (1933). Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse eines mathematischen Kolloquiums, 4, 34–38.

    Google Scholar 

  • Goodman, N. (1951). The structure of appearance. Cambridge (MA): Harvard University Press. Third edition: Dordrecht, Reidel, 1977.

  • Greenleaf, N. (1978). Linear order in lattices: A constructive study. In G.-C. Rota (Ed.), Studies in foundations and combinatorics (pp. 11–30). New York: Academic Press.

    Google Scholar 

  • Heyting, A. (1928). Zur intuitionistischen Axiomatik der projektiven Geometrie. Mathematische Annalen, 98, 491–538.

    Article  Google Scholar 

  • Heyting, A. (1956). Intuitionism. An introduction. Amsterdam: North-Holland.

    Google Scholar 

  • Hovda, P. (2009). What is classical mereology? Journal of Philosophical Logic, 38, 55–82.

    Article  Google Scholar 

  • Hovda, P. (2016). Parthood-like relations: Closure principles and connections to some axioms of classical mereology. Philosophical Perspectives, 30, 183–197.

    Article  Google Scholar 

  • Johnstone, P. T. (1982). Stone spaces. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kripke, S. A. (1965). Semantical analysis of intuitionistic logic I. In J. N. Crossley & M. A. E. Dummett (Eds.), Formal systems and recursive functions. Proceedings of the 8th logic colloquium (pp. 92–130). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Lando, G. (2017). Mereology. A philosophical introduction. London: Bloomsbury.

    Google Scholar 

  • Leonard, H. S., & Goodman, N. (1940). The calculus of individuals and its uses. The Journal of Symbolic Logic, 5, 45–55.

    Article  Google Scholar 

  • Leśniewski, S. (1916). Podstawy ogólnej teoryi mnogości. I. Moskow, Prace Polskiego Koła Naukowego w Moskwie (Sekcya matematyczno-przyrodnicza).

  • Leśniewski, S. (1927–1931). O podstawach matematyki. Przeglad Filozoficzny, 30–34, 164–206, 261–291, 60–101, 77–105, 142–170.

  • Lewis, D. K. (1991). Parts of classes. Oxford: Blackwell.

    Google Scholar 

  • Mormann, T. (2013). Heyting mereology as a framework for spatial reasoning. Axiomathes, 23, 137–164.

    Article  Google Scholar 

  • Negri, S. (1999). Sequent calculus proof theory of intuitionistic apartness and order relations. Archive for Mathematical Logic, 38, 521–547.

    Article  Google Scholar 

  • Niebergall, K.-G. (2011). Mereology. In L. Horsten & R. Pettigrew (Eds.), The Continuum companion to philosophical logic (pp. 271–298). New York: Continuum.

    Google Scholar 

  • Pietruszczak, A. (2014). A general concept of being a part of a whole. Notre Dame Journal of Formal Logic, 55, 359–381.

    Article  Google Scholar 

  • Pietruszczak, A. (2015). Classical mereology is not elementarily axiomatizable. Logic and Logical Philosophy, 24, 485–498.

    Google Scholar 

  • von Plato, J. (1999). Order in open intervals of computable reals. Mathematical Structures in Computer Science, 9, 103–108.

    Article  Google Scholar 

  • von Plato, J. (2001). Positive lattices. In P. Schuster, U. Berger, & H. Osswald (Eds.), Reuniting the antipodes. Constructive and nonstandard views of the continuum (pp. 185–197). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Polkowski, L. T. (2001). Approximate reasoning by parts. An introduction to rough mereology. Berlin: Springer.

    Google Scholar 

  • Russell, J. S. (2016). Indefinite divisibility. Inquiry, 59, 239–263.

    Article  Google Scholar 

  • Sambin, G. (Forthcoming). Positive topology and the basic picture. New structures emerging from constructive mathematics. Oxford: Clarendon Press.

  • Scott, D. (1968). Extending the topological interpretation to intuitionistic analysis. Compositio Mathematica, 20, 194–210.

    Google Scholar 

  • Simons, P. M. (1987). Parts. A study in ontology. Oxford: Clarendon Press.

    Google Scholar 

  • Simons, P. M. (1991). Free part-whole theory. In K. Lambert (Ed.), Philosophical applications of free logic (pp. 285–306). New York: Oxford University Press.

    Google Scholar 

  • Smith, N. J. J. (2005). A plea for things that are not quite all there: Or, is there a problem about vague composition and vague existence? The Journal of Philosophy, 102, 381–421.

    Article  Google Scholar 

  • Smorynski, C. A. (1973). Applications of Kripke models. In A. S. Troelstra (Ed.), Metatmathematical investigation of intuitionistic arithmetic and analysis (pp. 324–391). Berlin: Springer.

    Chapter  Google Scholar 

  • Tennant, N. (2013). Parts, classes and Parts of classes An anti-realist reading of Lewisian mereology. Synthese, 190, 709–742.

    Article  Google Scholar 

  • Troelstra, A. S., & van Dalen, D. (1988). Constructivism in mathematics. An introduction. Volume I. Amsterdam: North-Holland.

    Google Scholar 

  • Varzi, A. C. (2008). The extensionality of parthood and composition. The Philosophical Quarterly, 58, 108–133.

    Article  Google Scholar 

  • Varzi, A. C. (2016). Mereology. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy. Winter edition. https://plato.stanford.edu/archives/win2016/entries/mereology.

  • Weber, Z., & Cotnoir, A. J. (2015). Inconsistent boundaries. Synthese, 192, 1267–1294.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achille C. Varzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maffezioli, P., Varzi, A.C. Intuitionistic mereology. Synthese 198 (Suppl 18), 4277–4302 (2021). https://doi.org/10.1007/s11229-018-02035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-018-02035-2

Keywords

Navigation