Skip to main content
Log in

Full Stability of General Parametric Variational Systems

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

The paper introduces and studies the notions of Lipschitzian and Hölderian full stability of solutions to three-parametric variational systems described in the generalized equation formalism involving nonsmooth base mappings and partial subgradients of prox-regular functions acting in Hilbert spaces. Employing advanced tools and techniques of second-order variational analysis allows us to establish complete characterizations of, as well as directly verifiable sufficient conditions for, such full stability properties under mild assumptions. Furthermore, we derive exact formulas and effective quantitative estimates for the corresponding moduli. The obtained results are specified for important classes of variational inequalities and variational conditions in both finite and infinite dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayen, T., Bonnans, J.F., Silva, F.J.: Characterization of local quadratic growth for strong minima in the optimal control of semilinear elliptic equations. Trans. Amer. Math. Soc. 366, 2063–2087 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bernard, F., Thibault, L.: Prox-regular functions in Hilbert spaces. J. Math. Anal. Appl. 303, 1–14 (2005)

    Article  MathSciNet  Google Scholar 

  3. Bonnans, J.F.: Second-order analysis for control constrained optimal control problems of semilinear elliptic systems. Appl. Math. Optim. 38, 303–325 (1998)

    Article  MathSciNet  Google Scholar 

  4. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  Google Scholar 

  5. Chieu, N.H., Trang, N.T.Q.: Coderivative and monotonicity of continuous mappings. Taiwan. J. Math. 16, 353–365 (2012)

    Article  MathSciNet  Google Scholar 

  6. Dafermos, S.: Sensitivity analysis in variational inequalities. Math. Oper. Res. 13, 421–434 (1988)

    Article  MathSciNet  Google Scholar 

  7. Dontchev, A.L., Rockafellar, R.T.: Characterizations of strong regularity for variational inequalities over polyhedral convex sets. SIAM J. Optim. 6, 1087–1105 (1996)

    Article  MathSciNet  Google Scholar 

  8. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. A View from Variational Analysis, 2nd edn. Springer, New York (2014)

    MATH  Google Scholar 

  9. Facchinei, F., Pang, J.-S.: Finite-Dimesional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    MATH  Google Scholar 

  10. Haraux, A.: How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Japan 29, 615–707 (1977)

    Article  MathSciNet  Google Scholar 

  11. Henrion, R., Kruger, A.Y., Outrata, J.V.: Some remarks on stability of generalized equations. J. Optim. Theory Appl. 159, 681–697 (2013)

    Article  MathSciNet  Google Scholar 

  12. Hintermüller, M., Surowiec, T.: First-order optimality conditions for elliptic mathematical programs with equilibrium constraints via variational analysis. SIAM J. Optim. 21, 1561–1593 (2011)

    Article  MathSciNet  Google Scholar 

  13. Hintermüller, M., Mordukhovich, B.S., Surowiec, T.: Several approaches for the derivation of stationarity conditions for elliptic MPECs with upper-level control constraints. Math. Program. 146, 555–582 (2014)

    Article  MathSciNet  Google Scholar 

  14. Ioffe, A.D., Tikhomirov, V.M.: Theory of Extremal Problems. North-Holland, Amsterdam (1979)

    Google Scholar 

  15. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and their Applications. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  16. Kojima, M.: Strongly stable stationary solutions in nonlinear programs. In: Robinson, S.M. (ed.) Analysis and Computation of Fixed Points, pp. 93–138. Academic Press, New York (1980)

    Chapter  Google Scholar 

  17. Kyparisis, J.: Sensitivity analysis for nonlinear programs and variational inequalities with nonunique multipliers. Math. Oper. Res. 15, 286–298 (1990)

    Article  MathSciNet  Google Scholar 

  18. Lee, G.M., Tam, N.N., Yen, N.D.: Quadratic Programming and Affine Variational Inequalities. A Qualitative Study. Springer, New York (2006)

    MATH  Google Scholar 

  19. Levy, A.B., Poliquin, R.A., Rockafellar, R.T.: Stability of locally optimal solutions. SIAM J. Optim. 10, 580–604 (2000)

    Article  MathSciNet  Google Scholar 

  20. Lu, S.: Variational conditions under the constant rank constraint qualification. Math. Oper. Res. 35, 120–139 (2010)

    Article  MathSciNet  Google Scholar 

  21. Lu, S., Robinson, S.M.: Variational inequalities over perturbed polyhedral convex sets. Math. Oper. Res. 33, 689–711 (2008)

    Article  MathSciNet  Google Scholar 

  22. Mignot, F.: Contrôle dans les inéquations variationnelles elliptiques. J. Func. Anal. 22, 25–39 (1976)

    Article  Google Scholar 

  23. Mordukhovich, B.S.: Sensitivity analysis in nonsmooth optimization. In: Field, D.A., Komkov, V. (eds.) Theoretical Aspects of Industrial Design, SIAM Proc. Applied Math., vol. 58, pp. 32–46 (1992)

  24. Mordukhovich, B.S.: Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions. Trans. Amer. Math. Soc. 340, 1–36 (1993)

    Article  MathSciNet  Google Scholar 

  25. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory, II: Applications. Springer, Berlin (2006)

    Book  Google Scholar 

  26. Mordukhovich, B.S., Nghia, T.T.A.: Second-order variational analysis and characterizations of tilt-stable optimal solutions in infinite-dimensional spaces. Nonlinear Anal. 86, 159–180 (2013)

    Article  MathSciNet  Google Scholar 

  27. Mordukhovich, B.S., Nghia, T.T.A.: Full Lipschitzian and Hölderian stability in optimization with applications to mathematical programming and optimal control. SIAM J. Optim. 24, 1344–1381 (2014)

    Article  MathSciNet  Google Scholar 

  28. Mordukhovich, B.S., Nghia, T.T.A.: Second-order characterizations of tilt stability with applications to nonlinear programming. Math. Program. 149, 83–104 (2015)

    Article  MathSciNet  Google Scholar 

  29. Mordukhovich, B.S., Nghia, T.T.A.: Local monotonicity and full stability for parametric variational systems. SIAM J. Optim. 26, 1032–1059 (2016)

    Article  MathSciNet  Google Scholar 

  30. Mordukhovich, B.S., Outrata, J.V.: Coderivative analysis of quasi-variational inequalities with applications to stability in optimization. SIAM J. Optim. 18, 389–412 (2007)

    Article  MathSciNet  Google Scholar 

  31. Mordukhovich, B.S., Rockafellar, R.T.: Second-order subdifferential calculus with applications to tilt stability in optimization. SIAM J. Optim. 22, 953–986 (2012)

    Article  MathSciNet  Google Scholar 

  32. Mordukhovich, B.S., Rockafellar, R.T., Sarabi, M.E.: Characterizations of full stability in constrained optimization. SIAM J. Optim. 23, 1810–1849 (2013)

    Article  MathSciNet  Google Scholar 

  33. Mordukhovich, B.S., Nam, N.M., Nhi, N.T.Y.: Partial second-order subdifferentials in variational analysis and optimization. Numer. Func. Anal. Optim. 35, 1113–1151 (2014)

    Article  MathSciNet  Google Scholar 

  34. Mordukhovich, B.S., Nghia, T.T.A., Rockafellar, R.T.: Full stability in finite-dimensional optimization. Math. Oper. Res. 40, 226–252 (2014)

    Article  MathSciNet  Google Scholar 

  35. Pennanen, T.: Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Math. Oper. Res. 27, 170–191 (2002)

    Article  MathSciNet  Google Scholar 

  36. Poliquin, R.A., Rockafellar, R.T.: Prox-regular functions in variational analysis. Trans. Amer. Math. Soc. 348, 1805–1838 (1996)

    Article  MathSciNet  Google Scholar 

  37. Poliquin, R.A., Rockafellar, R.T.: Tilt stability of a local minimum. SIAM J. Optim. 8, 287–299 (1998)

    Article  MathSciNet  Google Scholar 

  38. Robinson, S.M.: Generalized equations and their solutions, I: basic theory. Math. Program. Stud. 10, 128–141 (1979)

    Article  MathSciNet  Google Scholar 

  39. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)

    Article  MathSciNet  Google Scholar 

  40. Robinson, S.M.: Generalized equations and their solutions, II: applications to nonlinear programming. Math. Program. Stud. 19, 200–221 (1982)

    Article  MathSciNet  Google Scholar 

  41. Robinson, S.M.: Variational conditions with smooth constraints. Structure and analysis. Math. Program. 97, 245–265 (2003)

    Article  MathSciNet  Google Scholar 

  42. Robinson, S.M.: Aspects of the projector on prox-regular sets. In: Giannessi, F., Maugeri, A. (eds.) Variational Analysis and Applications, pp. 963–973. Springer, New York (2005)

  43. Robinson, S.M.: Equations on monotone graphs. Math. Program. 141, 49–101 (2013)

    Article  MathSciNet  Google Scholar 

  44. Sebbah, M., Thibault, L.: Metric projection and compatibly parameterized families of prox-regular sets in Hilbert space. Nonlinear Anal. 75, 1547–1562 (2012)

    Article  MathSciNet  Google Scholar 

  45. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  Google Scholar 

  46. Stampacchia, G.: Formes bilinéaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris 258, 4413–4416 (1964)

    MathSciNet  MATH  Google Scholar 

  47. Walkup, D.W., Wets, R.J.-B.: A Lipschitzian characterization of convex polyhedra. Proc. Amer. Math. Soc. 20, 167–173 (1969)

    Article  MathSciNet  Google Scholar 

  48. Yen, N.D.: Lipschitz continuity of solutions of variational inequalities with a parametric polyhedral constraint. Math. Oper. Res. 20, 695–708 (1995)

    Article  MathSciNet  Google Scholar 

  49. Yen, N.D.: Hölder continuity of solutions to a parametric variational inequality. Appl. Math. Optim. 31, 245–255 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Mordukhovich.

Additional information

Research of B. S. Mordukhovich and D. T. Pham was partly supported by the US National Science Foundation under grant DMS-1512846, by the US Air Force Office of Scientific Research under grant #15RT0462 and by the RUDN University Program 5-100.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mordukhovich, B.S., Nghia, T.T.A. & Pham, D.T. Full Stability of General Parametric Variational Systems. Set-Valued Var. Anal 26, 911–946 (2018). https://doi.org/10.1007/s11228-018-0474-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-018-0474-7

Keywords

Mathematics Subject Classification (2010)

Navigation