Skip to main content
Log in

A Class of Subdifferential Inclusions for Elastic Unilateral Contact Problems

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

We consider a class of stationary subdifferential inclusions in a reflexive Banach space. We reformulate the problem in terms of a variational inequality with multivalued term and prove an existence result using the Kakutani-Fan-Glicksberg fixed point theorem. This approach allows to consider, in a natural way, a dual variational formulation of the problem. Next, we study the link between the primal and dual formulations and provide an equivalence result. Then, we consider a new mathematical model which describes the contact of an elastic body with a foundation. We apply the abstract formalism to derive the primal and the dual variational formulations of the problem, in terms of displacement and stress, respectively. Finally, we present existence and equivalence results in the study of this contact model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis, A Hitchhiker’s Guide, Third Edition. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  3. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems. John Wiley, Chichester (1984)

    MATH  Google Scholar 

  4. Barboteu, M., Cheng, X.L., Sofonea, M.: Analysis of a contact problem with unilateral constraint and slip-dependent friction. Mathematics and Mechanics of Solids, published online on June 13, 2014. doi:10.1177/1081286514537289

  5. Brézis, H.: Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier (Grenoble) 18, 115–175 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brézis, H.: Problèmes unilatéraux. J. Math. Pures Appl. 51, 1–168 (1972)

    MathSciNet  MATH  Google Scholar 

  7. Clarke, F.H.: Generalized gradients and applications. Trans. Amer. Math. Soc. 205, 247–262 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clarke, F.H.: Generalized gradients of Lipschitz functionals. Adv. Math. 40, 52–67 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley Interscience, New York (1983)

    MATH  Google Scholar 

  10. Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Theory. Kluwer Academic/Plenum Publishers, Boston (2003)

    Book  MATH  Google Scholar 

  11. Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Applications. Kluwer Academic/Plenum Publishers, Boston (2003)

    Book  MATH  Google Scholar 

  12. Eck, C., Jarušek, J., Krbeč, M.: Unilateral Contact Problems: Variational Methods and Existence Theorems. Pure and Applied Mathematics, vol. 270. Chapman/CRC Press, New York (2005)

    Book  MATH  Google Scholar 

  13. Friedman, A.: Variational Principles and Free-Boundary Problems. John Wiley, New York (1982)

    MATH  Google Scholar 

  14. Han, W., Migórski, S., Sofonea, M.: A class of variational-hemivariational inequalities with applications to elastic contact problems. SIAM J. Math. Anal. 46, 3891–3912 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Han, W., Reddy, B.D.: Plasticity: Mathematical Theory and Numerical Analysis, second edition. Springer (2013)

  16. Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity vol. 30, Studies in Advanced Mathematics, Americal Mathematical Society, Providence. RI–International Press, Somerville (2002)

    Google Scholar 

  17. Haslinger, J., Hlaváček, I., Nečas, J.: Numerical methods for unilateral problems in solid mechanics. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. IV, pp 313–485, North-Holland, Amsterdam (1996)

  18. Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite Element Method for Hemivariational Inequalities. Theory, Methods and Applications. Kluwer Academic Publishers, Boston (1999)

    Book  MATH  Google Scholar 

  19. Hlaváček, I., Haslinger, J., Necǎs, J.: and J. Lovíšek, Solution of Variational Inequalities in Mechanics. Springer, New York (1988)

    Book  Google Scholar 

  20. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988)

    Book  MATH  Google Scholar 

  21. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and their Applications, Classics in Applied Mathematics, vol. 31. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  22. Lions, J.-L.: Quelques méthodes de resolution des problémes aux limites non linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  23. Migórski, S., Ochal, A., Sofonea, M.: History-dependent subdifferential inclusions and hemivariational inequalities in contact mechanics. Nonlinear Anal. Real World Appl. 12, 3384–3396 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, vol. 26. Springer, New York (2013)

    MATH  Google Scholar 

  25. Migórski, S., Ochal, A., Sofonea, M.: History-dependent variational-hemivariational inequalities in contact mechanics. Nonlinear Anal. Real World Appl. 22, 604–618 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Naniewicz, Z., Panagiotopoulos, P. D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, Inc., New York (1995)

    MATH  Google Scholar 

  27. Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications. Birkhäuser, Boston (1985)

    Book  MATH  Google Scholar 

  28. Panagiotopoulos, P. D.: Hemivariational Inequalities, Applications in Mechanics and Engineering. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  29. Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact, Lect. Notes Phys, vol. 655. Springer, Berlin Heidelberg (2004)

    Book  MATH  Google Scholar 

  30. Sofonea, M., Danan, D., Zheng, C.: Primal and dual variational formulation of a frictional contact problem. Mediterr. J. Math. (2015). doi:10.1007/s00009-014-0504-0. to appear

  31. Sofonea, M., Han, W., Migórski, S.: Numerical analysis of history-dependent variational inequalities with applications to contact problems. Eur. J. Appl. Math. 26, 427–452 (2015)

    Article  MathSciNet  Google Scholar 

  32. Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series, vol. 398. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  33. Zeidler, E.: Nonlinear Functional Analysis and Applications II B. Springer, New York (1990)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Sofonea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, P., Migórski, S. & Sofonea, M. A Class of Subdifferential Inclusions for Elastic Unilateral Contact Problems. Set-Valued Var. Anal 24, 355–379 (2016). https://doi.org/10.1007/s11228-015-0346-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-015-0346-3

Keywords

Mathematics Subject Classification (2010)

Navigation