Skip to main content

Advertisement

Log in

An Estimation of Exact Penalty for Infinite-Dimensional Inequality-Constrained Minimization Problems

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

We use the penalty approach in order to study inequality-constrained minimization problems in infinite dimensional spaces. A penalty function is said to have the exact penalty property if there is a penalty coefficient for which a solution of an unconstrained penalized problem is a solution of the corresponding constrained problem. In this paper we consider a large class of inequality-constrained minimization problems for which a constraint is a mapping with values in a normed ordered space. For this class of problems we introduce a new type of penalty functions, establish the exact penalty property and obtain an estimation of the exact penalty. Using this exact penalty property we obtain necessary and sufficient optimality conditions for the constrained minimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslender, A.: Penalty and barrier methods: a unified framework. SIAM J. Optim. 10, 211–230 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auslender, A.: Asymptotic analysis for penalty and barrier methods in variational inequalities. SIAM J. Control Optim. 37, 653–671 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boukari, D., Fiacco, A.V.: Survey of penalty, exact-penalty and multiplier methods from 1968 to 1993. Optimization 32, 301–334 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burke, J.V.: An exact penalization viewpoint of constrained optimization. SIAM J. Control Optim. 29, 968–998 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Clarke, F.H.: A new approach to Lagrange multipliers. Math. Oper. Res. 1, 165–174 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley Interscience (1983)

  7. Demyanov, V.F.: Exact penalty functions and problems of the calculus of variations. Autom. Remote Control 65, 280–290 (2004)

    Article  MathSciNet  Google Scholar 

  8. Demyanov, V.F., Vasiliev, L.V.: Nondifferentiable Optimization. Optimization Software, Inc., New York (1985)

    MATH  Google Scholar 

  9. Di Pillo, G., Grippo, L.: Exact penalty functions in constrained optimization. SIAM J. Control Optim. 27, 1333–1360 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eremin, I.I.: The penalty method in convex programming. Sov. Math. Dokl. 8, 459–462 (1966)

    Google Scholar 

  12. Eremin, I.I.: The penalty method in convex programming. Cybernetics 3, 53–56 (1971)

    Article  MathSciNet  Google Scholar 

  13. Han, S.-P., Mangasarian, O.L.: Exact penalty function in nonlinear programming. Math. Program. 17, 251–269 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hiriart-Urruty, J.-B., Lemarechal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin (1993)

    Google Scholar 

  15. Kutateladze, S.S.: Convex operators. Usp. Mat. Nauk 34, 167–196 (1979)

    MathSciNet  MATH  Google Scholar 

  16. Mordukhovich, B.S.: Penalty functions and necessary conditions for the extremum in nonsmooth and nonconvex optimization problems. Usp. Mat. Nauk. 36, 215–216 (1981)

    MathSciNet  MATH  Google Scholar 

  17. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, II: Applications. Springer, Berlin (2006)

    Google Scholar 

  18. Zangwill, W.I.: Nonlinear programming via penalty functions. Manage. Sci. 13, 344–358 (1967)

    Article  MathSciNet  Google Scholar 

  19. Zaslavski, A.J.: Existence of solutions of minimization problems with an increasing cost function and porosity. Abstr. Appl. Anal. 2003, 651–670 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zaslavski, A.J.: Generic existence of solutions of minimization problems with an increasing cost function. Nonlinear Funct. Anal. Appl. 8, 181–213 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Zaslavski, A.J.: A sufficient condition for exact penalty in constrained optimization. SIAM J. Optim. 16, 250–262 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zaslavski, A.J.: Existence of approximate exact penalty in constrained optimization. Math. Oper. Res. 32, 484–495 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Zaslavski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaslavski, A.J. An Estimation of Exact Penalty for Infinite-Dimensional Inequality-Constrained Minimization Problems. Set-Valued Anal 19, 385–398 (2011). https://doi.org/10.1007/s11228-010-0144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-010-0144-x

Keywords

Mathematics Subject Classifications (2010)

Navigation