Skip to main content
Log in

Data congestion in VANETs: research directions and new trends through a bibliometric analysis

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Vehicular Ad hoc Networks (VANETs) become increasingly popular in academia and manufacturing businesses. The VANETs domain attracts massive attention from various authors all over the world on a large scale. However, substantial research efforts are expected in the VANETs field to solve the data congestion problem. For this, it is vital to state the current status of research in this domain. As the research publications have substantially increased since 2009, a bibliometric analysis is necessary for researchers to understand actual results and findings in this area. This paper examines and analyzes the status of research trends between 2010 and 2019 for the domain “Data congestion in VANETs” by applying various parameters. As extracted from the Scopus database till December 31, 2019, a total of 11,109 publications are associated with the VANETs domain. Moreover, 434 publications among the collection are related to data congestion in the VANETs field. Finally, a software tool named the VOSviewer is used to create and envision the selected field’s bibliometric networks. This analysis paper will help the researchers to catch the research trends of data congestion in VANETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abu-Tair M, Min G, Ni Q, Liu H (2010) An adaptive medium access control scheme for mobile ad hoc networks under self-similar traffic. J Supercomput 53(1):212–230

    Google Scholar 

  2. Hartenstein H, Laberteaux L (2008) A tutorial survey on vehicular ad hoc networks. IEEE Commun Mag 46(6):164–171

    Google Scholar 

  3. Ali GMN, Chan E, Li W (2014) On scheduling data access with cooperative load balancing in vehicular ad hoc networks (vanets). J Supercomput 67(2):438–468

    Google Scholar 

  4. Stanica R, Chaput E, Beylot A-L (2011) Simulation of vehicular ad-hoc networks: challenges, review of tools and recommendations. Comput Netw 55(14):3179–3188

    Google Scholar 

  5. Prakash G, Krishnamoorthy R, Kalaivaani P (2019) Resource key distribution and allocation based on sensor vehicle nodes for energy harvesting in vehicular ad hoc networks for transport application. J Supercomput 76:1–14

    Google Scholar 

  6. Cunha F, Villas L, Boukerche A, Maia G, Viana A, Mini RA, Loureiro AA (2016) Data communication in vanets: protocols, applications and challenges. Ad Hoc Netw 44:90–103

    Google Scholar 

  7. Eze EC, Zhang S-J, Liu E-J, Eze JC (2016) Advances in vehicular ad-hoc networks (vanets): challenges and road-map for future development. Int J Autom Comput 13(1):1–18

    Google Scholar 

  8. Saini M, Alelaiwi A, Saddik AE (2015) How close are we to realizing a pragmatic vanet solution? a meta-survey. ACM Comput Surv (CSUR) 48(2):29

    Google Scholar 

  9. Balouchzahi N-M, Fathy M, Akbari A (2016) An efficient infrastructure based service discovery in vehicular networks using p2p structures. J Supercomput 72(3):1013–1034

    Google Scholar 

  10. Arkian HR, Atani RE, Diyanat A, Pourkhalili A (2015) A cluster-based vehicular cloud architecture with learning-based resource management. J Supercomput 71(4):1401–1426

    Google Scholar 

  11. Amer HM, Al-Kashoash H, Hawes M, Chaqfeh M, Kemp A, Mihaylova L (2019) Centralized simulated annealing for alleviating vehicular congestion in smart cities. Technol Forecast Soc Change 142:235–248

    Google Scholar 

  12. Li J, Fu D, Yuan Q, Zhang H, Chen K, Yang S, Yang F (2019) A traffic prediction enabled double rewarded value iteration network for route planning. IEEE Trans Veh Technol 68:4170–4181

    Google Scholar 

  13. Guo C, Li D, Zhang G, Zhai M (2018) Real-time path planning in urban area via vanet-assisted traffic information sharing. IEEE Trans Veh Technol 67(7):5635–5649

    Google Scholar 

  14. Qureshi KN, Abdullah AH, Kaiwartya O, Iqbal S, Butt RA, Bashir F (2018) A dynamic congestion control scheme for safety applications in vehicular ad hoc networks. Comput Electr Eng 72:774–788

    Google Scholar 

  15. Oliveira R, Montez C, Boukerche A, Wangham MS (2017) Reliable data dissemination protocol for vanet traffic safety applications. Ad Hoc Netw 63:30–44

    Google Scholar 

  16. Feukeu E, Zuva T (2017) Dbsma approach for congestion mitigation in vanets. Procedia Comput Sci 109:42–49

    Google Scholar 

  17. Fallah YP, Nasiriani N, Krishnan H (2016) Stable and fair power control in vehicle safety networks. IEEE Trans Veh Technol 65(3):1662–1675

    Google Scholar 

  18. Hamida EB, Noura H, Znaidi W (2015) Security of cooperative intelligent transport systems: standards, threats analysis and cryptographic countermeasures. Electronics 4(3):380–423

    Google Scholar 

  19. Engoulou RG, Bellaïche M, Pierre S, Quintero A (2014) Vanet security surveys. Comput Commun 44:1–13

    Google Scholar 

  20. Mejri MN, Ben-Othman J, Hamdi M (2014) Survey on vanet security challenges and possible cryptographic solutions. Veh Commun 1(2):53–66

    Google Scholar 

  21. Taherkhani N, Pierre S (2016) Centralized and localized data congestion control strategy for vehicular ad hoc networks using a machine learning clustering algorithm. IEEE Trans Intell Trans Syst 17(11):3275–3285

    Google Scholar 

  22. Xu Y, Wu Y, Wu G, Xu J, Liu B, Sun L (2010) Data collection for the detection of urban traffic congestion by vanets. In: 2010 IEEE Asia-Pacific Services Computing Conference, IEEE, pp. 405–410

  23. de Oliveira CHR, Costa APF, Thomaz VF, Silva IA (2019) Low-cost deployment proposal to urban mobility in smart cities. J Supercomput 75(11):7265–7289

    Google Scholar 

  24. Ullah A, Yaqoob S, Imran M, Ning H (2018) Emergency message dissemination schemes based on congestion avoidance in vanet and vehicular fog computing. IEEE Access 7:1570–1585

    Google Scholar 

  25. Knorr F, Baselt D, Schreckenberg M, Mauve M (2012) Reducing traffic jams via vanets. IEEE Trans Veh Technol 61(8):3490–3498

    Google Scholar 

  26. Fernández-González Á, Rosillo R, Miguel-Dávila JÁ, Matellán V (2015) Historical review and future challenges in supercomputing and networks of scientific communication. J Supercomput 71(12):4476–4503

    Google Scholar 

  27. Lewis BR, Templeton GF, Luo X (2007) A scientometric investigation into the validity of is journal quality measures. J Assoc Inform Syst 8(12):35

    Google Scholar 

  28. Rajendran P, Jeyshankar R, Elango B (2011) Scientometric analysis of contributions to journal of scientific and industrial research. Int J Digital Libr Serv 1(2):79–89

    Google Scholar 

  29. Van Raan AF (1997) Scientometrics: state-of-the-art. Scientometrics 38(1):205–218

    Google Scholar 

  30. Mooghali A, Alijani R, Karami N, Khasseh A (2012) Scientometric analysis of the scientometric literature. Int J Inform Sci Manag (IJISM) 9(1):19–31

    Google Scholar 

  31. Schwarze S, Voß S, Zhou G, Zhou G (2012) Scientometric analysis of container terminals and ports literature and interaction with publications on distribution networks. In: Proceedings of the International Conference on Computational Logistics, Springer, pp. 33–52

  32. Straub D (2006) The value of scientometric studies: an introduction to a debate on is as a reference discipline. J Assoc Inform Syst 7(5):241

    Google Scholar 

  33. Serenko A, Bontis N (2004) Meta-review of knowledge management and intellectual capital literature: citation impact and research productivity rankings. Knowl Process Manag 11(3):185–198

    Google Scholar 

  34. Voß S, Zhao X (2005) Some steps towards a scientometric analysis of publications in machine translation. In: Proceedings of the 23rd IASTED IASTED International Multi-Conference Artificial Intelligence and Applications, Innsbruck, Austria. pp. 651–655

  35. Leydesdorff L, Schank T (2008) Dynamic animations of journal maps: indicators of structural changes and interdisciplinary developments. J Am Soc Inform Sci Technol 59(11):1810–1818

    Google Scholar 

  36. Hood W, Wilson C (2001) The literature of bibliometrics, scientometrics, and informetrics. Scientometrics 52(2):291–314

    Google Scholar 

  37. Leydesdorff L (2002) Indicators of structural change in the dynamics of science: Entropy statistics of the sci journal citation reports. Scientometrics 53(1):131–159

    Google Scholar 

  38. Cobo MJ, Chiclana F, Collop A, de Ona J, Herrera-Viedma E (2013) A bibliometric analysis of the intelligent transportation systems research based on science mapping. IEEE Trans Intell Trans Syst 15(2):901–908

    Google Scholar 

  39. Sivaraman S, Trivedi MM (2010) A general active-learning framework for on-road vehicle recognition and tracking. IEEE Trans Intell Trans Syst 11(2):267–276

    Google Scholar 

  40. Fu Y, Tang L, Chen Q, Gong P (2013) Vehicular ad hoc network routing protocol and its research progress [j]. J Comput Appl, vol. 7

  41. Shahid A, Afzal MT, Abdar M, Basiri ME, Zhou X, Yen NY, Chang J-W (2019) Insights into relevant knowledge extraction techniques: a comprehensive review. J Supercomput 76:1–39

    Google Scholar 

  42. Kabir MH (2013) Research issues on vehicular ad hoc network. Intern J Eng Trends Tech (IJETT). 6:174–179

    Google Scholar 

  43. Dalal K, Dahiya P (2017) State-of-the-art in vanets: The core of intelligent transportation system. IUP J Electr Electron Eng. 10(1):27–39

    Google Scholar 

  44. Yang Y, Bagrodia R (2009) Evaluation of vanet-based advanced intelligent transportation systems. In: Proceedings of the Sixth ACM International Workshop on Vehicular Internetworking, pp. 3–12

  45. Liang W, Li Z, Zhang H, Wang S, Bie R (2015) Vehicular ad hoc networks: architectures, research issues, methodologies, challenges, and trends. Int J Distrib Sens Netw 11(8):745303

    Google Scholar 

  46. Eze EC, Zhang S, Liu E (2014) Vehicular ad hoc networks (vanets): Current state, challenges, potentials and way forward. In: Proceedings of the 2014 20th International Conference on Automation and Computing, IEEE, pp. 176–181

  47. Jacobs D (2010) Demystification of bibliometrics, scientometrics, informetrics and webometrics. In: Proceedings of the 11th DIS Annual Conference, pp. 1–19

  48. Sarmiento I, Cardenas Y, Valencia G (2017) Análisis cienciométrico de la investigación de sistemas fotovoltaicos integrados a edificios desde el año, (2000) a 2017. Revista Espacios 38(47):29

    Google Scholar 

  49. Abramo G, Angelo CAD, Caprasecca A (2009) Allocative efficiency in public research funding: Can bibliometrics help? Res Policy 38(1):206–215

    Google Scholar 

  50. Ahmad I, Ahmed G, Shah SAA, Ahmed E (2020) A decade of big data literature: analysis of trends in light of bibliometrics. J Supercomput 76(5):3555–3571

    Google Scholar 

  51. Liu X, Wang M, Fu H (2020) Visualized analysis of knowledge development in green building based on bibliographic data mining. J Supercomput 76(5):3266–3282

    Google Scholar 

  52. Shafiq M, Yu X, Bashir AK, Chaudhry HN, Wang D (2018) A machine learning approach for feature selection traffic classification using security analysis. J Supercomput 74(10):4867–4892

    Google Scholar 

  53. Zeadally S, Hunt R, Chen Y-S, Irwin A, Hassan A (2012) Vehicular ad hoc networks (vanets): status, results, and challenges. Telecommun Syst 50(4):217–241

    Google Scholar 

  54. ur Rehman S, Khan MA, Zia TA, Zheng L (2013) Vehicular ad-hoc networks (vanets)-an overview and challenges. J Wirel Netw Commun 3(3):29–38

    Google Scholar 

  55. Yousefi S, Mousavi MS, Fathy M (2006) Vehicular ad hoc networks (vanets): challenges and perspectives. In: Proceedings of the 2006 6th International Conference on ITS Telecommunications, IEEE, pp. 761–766

  56. Samara G, Al-Salihy WA, Sures R (2010) Security issues and challenges of vehicular ad hoc networks (vanet). In: Proceedings of the 4th International Conference on New Trends in Information Science and Service Science, IEEE, pp. 393–398

  57. Cavalcanti ER, de Souza JAR, Spohn MA, Gomes RCdM, Costa AFBFd (2018) Vanets’ research over the past decade: overview, credibility, and trends. ACM SIGCOMM Comput Commun Rev 48(2):31–39

    Google Scholar 

  58. Liu S, Lee M-H (2013) Research on prospective innovation design of smart electric vehicle. Front Manuf Eng 1(2):1–9

    Google Scholar 

  59. Mussa SAB, Manaf M, Ghafoor KZ, Doukha Z (2015) Simulation tools for vehicular ad hoc networks: A comparison study and future perspectives. In: Proceedings of the 2015 International Conference on Wireless Networks and Mobile Communications (WINCOM ’15), IEEE, pp. 1–8

  60. Fonseca E, Festag A (2006) A survey of existing approaches for secure ad hoc routing and their applicability to vanets. NEC Netw Lab 28:1–28

    Google Scholar 

  61. Englund C, Chen L, Vinel A, Lin SY (2015) Future Applications of VANETs. In: Campolo C, Molinaro A, Scopigno R (eds) Vehicular ad hoc Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-15497-8_18

  62. Kakkasageri M, Manvi S (2014) Information management in vehicular ad hoc networks: a review. J Netw Comput Appl 39:334–350

    Google Scholar 

  63. Hajlaoui R, Guyennet H, Moulahi T (2016) A survey on heuristic-based routing methods in vehicular ad-hoc network: technical challenges and future trends. IEEE Sens J 16(17):6782–6792

    Google Scholar 

  64. Straub DW, Ang S, Evaristo R (1994) Normative standards for is research. ACM SIGMIS Database DATABASE Adv Inform Syst 25(1):21–34

    Google Scholar 

  65. Vrettas G, Sanderson M (2015) Conferences versus journals in computer science. J Assoc Inform Sci Technol 66(12):2674–2684

    Google Scholar 

  66. Mehlhorn K, Vardi MY, Herbstritt M (2012) Publication culture in computing research. Dagstuhl Rep 2(11):20–44

    Google Scholar 

  67. Patterson D, Snyder L, Ullman J (1999) Best practices memo: Evaluating computer scientists and engineers for promotion and tenure. Comput Res News 11(4):A–B

  68. Merton RK (1988) The Matthew effect in science, ii: Cumulative advantage and the symbolism of intellectual property. isis 79(4):606–623

    Google Scholar 

  69. Merton RK (1968) The Matthew effect in science: The reward and communication systems of science are considered. Science 159(3810):56–63

    Google Scholar 

  70. Bonitz M, Bruckner E, Scharnhorst A (1997) Characteristics and impact of the Matthew effect for countries. Scientometrics 40(3):407–422

    Google Scholar 

  71. Faria JR, Goel RK (2010) Returns to networking in academia. NETNOMICS Econ Res Electron Netw 11(2):103–117

    Google Scholar 

  72. Holsapple CW, Johnson LE, Manakyan H, Tanner J (1994) Business computing research journals: a normalized citation analysis. J Manag Inform Syst 11(1):131–140

    Google Scholar 

  73. Howard GS, Cole DA, Maxwell SE (1987) Research productivity in psychology based on publication in the journals of the American psychological association. Am Psychol 42(11):975

    Google Scholar 

  74. Van Eack N, Waltman L (2010) Software survey: Vosviewer a computer program for bibliometric mapping. Scientometrics 84(2):523–538

    Google Scholar 

  75. Van Eck NJ, Waltman L (2013) Vosviewer manual. Univeristeit Leiden, Leiden, pp 1–53

    Google Scholar 

  76. Williams B (2020) Dimensions & vosviewer bibliometrics in the reference interview. Code4Lib Journal, no. 47

  77. Pan X, Yan E, Cui M, Hua W (2018) Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools. J Inform 12(2):481–493

    Google Scholar 

  78. Choudhary RK, Awasthi S (2018) Bibliometric visualisation tools. Libr Prog (International) 38(2):319–324

    Google Scholar 

  79. Cobo MJ, López-Herrera AG, Herrera-Viedma E, Herrera F (2011) Science mapping software tools: Review, analysis, and cooperative study among tools. J Am Soc Inform Sci Technol 62(7):1382–1402

    Google Scholar 

  80. Boyack KW, Klavans R (2010) Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? J Am Soc Inform Sci Technol 61(12):2389–2404

    Google Scholar 

  81. Yan E, Ding Y (2012) Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other. J Am Soc Inform Sci Technol 63(7):1313–1326

    Google Scholar 

  82. Kumar V, Mishra S, Chand N et al (2013) Applications of vanets: present & future. Commun Netw 5(01):12

    Google Scholar 

  83. Hasrouny H, Samhat AE, Bassil C, Laouiti A (2017) Vanet security challenges and solutions: a survey. Veh Commun 7:7–20

    Google Scholar 

  84. Liang L, Ye H, Li GY (2018) Toward intelligent vehicular networks: a machine learning framework. IEEE Internet Things J 6(1):124–135

    Google Scholar 

  85. Kwon J-H, Chang HS, Shon T, Jung J-J, Kim E-J (2016) Neighbor stability-based vanet clustering for urban vehicular environments. J Supercomput 72(1):161–176

    Google Scholar 

  86. Khatri S, Vachhani H, Shah S, Bhatia J, Chaturvedi M, Tanwar S, Kumar N (2020) Machine learning models and techniques for vanet based traffic management: Implementation issues and challenges. Peer-to-Peer Netw Appl. https://doi.org/10.1007/s12083-020-00993-4

    Article  Google Scholar 

  87. Coulter R, Pan L (2018) Intelligent agents defending for an iot world: A review. Comput Secur 73:439–458

    Google Scholar 

  88. Kolandaisamy R, Noor RM, Z’aba MR, Ahmedy I, Kolandaisamy I (2020) Adapted stream region for packet marking based on ddos attack detection in vehicular ad hoc networks. J Supercomput 76(8):5948–5970

    Google Scholar 

  89. Falah A, Pan L, Huda S, Pokhrel SR, Anwar A (2020) Improving malicious pdf classifier with feature engineering: A data-driven approach. Future Gener Comput Syst 115:314–326

    Google Scholar 

  90. Zheng X, Pan L, Chen H, Di Pietro R, Batten L (2017) A testbed for security analysis of modern vehicle systems. In: Proceedings of the 2017 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (Trustcom ’17), IEEE, pp. 1090–1095

  91. Zheng X, Pan L, Chen H, Wang P (2016) Investigating security vulnerabilities in modern vehicle systems. In: Proceedings of the International Conference on Applications and Techniques in Information Security, Springer, pp. 29–40

  92. Zhao P, Zhang G, Wan S, Liu G, Umer T (2020) A survey of local differential privacy for securing internet of vehicles. J Supercomput 76:8391–8412. https://doi.org/10.1007/s11227-019-03104-0

    Article  Google Scholar 

  93. Liu L, Chen C, Qiu T, Zhang M, Li S, Zhou B (2018) A data dissemination scheme based on clustering and probabilistic broadcasting in vanets. Veh Commun 13:78–88

    Google Scholar 

  94. Schoch E, Kargl F, Weber M, Leinmuller T (2008) Communication patterns in vanets. IEEE Commun Mag 46(11):119–125

    Google Scholar 

  95. Luo Y, Zhang W, Hu Y (2010) A new cluster based routing protocol for vanet. In: Proceedings of the 2010 Second International Conference on Networks Security, Wireless Communications and Trusted Computing, vol. 1, IEEE, pp. 176–180

  96. Nkenyereye L, Park Y, Rhee K-H (2018) Secure vehicle traffic data dissemination and analysis protocol in vehicular cloud computing. J Supercomput 74(3):1024–1044

    Google Scholar 

  97. Fogue M, Garrido P, Martinez FJ, Cano J-C, Calafate CT, Manzoni P (2012) Evaluating the impact of a novel message dissemination scheme for vehicular networks using real maps. Trans Res Part C Emerg Technol 25:61–80

    Google Scholar 

  98. Jerbi M, Senouci S-M, Meraihi R, Ghamri-Doudane Y (2007) An improved vehicular ad hoc routing protocol for city environments. In: Proceedings of the 2007 IEEE International Conference on Communications, IEEE, pp. 3972–3979

  99. Bagherlou H, Ghaffari A (2018) A routing protocol for vehicular ad hoc networks using simulated annealing algorithm and neural networks. J Supercomput 74(6):2528–2552

    Google Scholar 

  100. Xiong W, Li Q-Q (2015) Performance evaluation of data disseminations for vehicular ad hoc networks in highway scenarios. Int Arch Photogramm Remote Sens Spat Inform Sci 37:1015–1020

    Google Scholar 

  101. Caizzone G, Giacomazzi P, Musumeci L, Verticale G (2005) A power control algorithm with high channel availability for vehicular ad hoc networks. In: Proceedings of the IEEE International Conference on Communications (ICC 2005), vol. 5, IEEE, pp. 3171–3176

  102. Jakubiak J, Koucheryavy Y (2008) State of the art and research challenges for vanets. In: Proceedings of the 2008 5th IEEE Consumer Communications and Networking Conference, IEEE, pp. 912–916

  103. Al-Mayouf YRB, Mahdi OA, Taha NA, Abdullah NF, Khan S, Alam M (2018) Accident management system based on vehicular network for an intelligent transportation system in urban environments. J Adv Transport 2018. https://doi.org/10.1155/2018/6168981

  104. Tsai M-F, Wang P-C, Shieh C-K, Hwang W-S, Chilamkurti N, Rho S, Lee YS (2015) Improving positioning accuracy for vanet in real city environments. J Supercomput 71(6):1975–1995

    Google Scholar 

  105. Zhang L, Valaee S (2014) Safety context-aware congestion control for vehicular broadcast networks. In: Proceedings of the 2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC ’14), IEEE, pp. 399–403

  106. Lim J, Jeong YS, Park D-S, Lee H (2018) An efficient distributed mutual exclusion algorithm for intersection traffic control. J Supercomput 74(3):1090–1107

    Google Scholar 

  107. Jain B, Brar G, Malhotra J, Rani S, Ahmed SH (2018) A cross layer protocol for traffic management in social internet of vehicles. Future Gener Comput Syst 82:707–714

    Google Scholar 

  108. You Z, Cheng G, Wang Y, Chen P, Chen S (2019) Cross-layer and sdn based routing scheme for p2p communication in vehicular ad-hoc networks. Appl Sci 9(22):4734

    Google Scholar 

  109. Antonopoulos A, Skianis C, Verikoukis C (2013) Network coding-based cooperative arq scheme for vanets. J Netw Comput Appl 36(3):1001–1007

    Google Scholar 

  110. Zaidi S, Bitam S, Mellouk A (2016) Enhanced adaptive sub-packet forward error correction mechanism for video streaming in vanet. In: Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM ’16), IEEE, pp 1–6

  111. Jang H-C, Chuang S-C (2012) Cookie-cooperative automatic repeat request for transmission assistance in vanet. Telecommun Syst 50(4):311–324

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarandeep Kaur Bhatia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, T.K., Ramachandran, R.K., Doss, R. et al. Data congestion in VANETs: research directions and new trends through a bibliometric analysis. J Supercomput 77, 6586–6628 (2021). https://doi.org/10.1007/s11227-020-03520-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03520-7

Keywords

Navigation