Skip to main content

Advertisement

Log in

Efficient computation offloading for Internet of Vehicles in edge computing-assisted 5G networks

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The Internet of Vehicles (IoV) is employed to gather real-time traffic information for drivers, and base stations in 5G systems are used to assist in traffic data transmission. For rapid implementation, the applications in vehicles are available to be offloaded to edge nodes (ENs) which are enhanced from micro base stations. Despite the benefits of IoV and ENs, the explosive growth of offloaded vehicle applications exceeds the capacity of ENs, causing the overload of fractional ENs. Therefore, it is necessary to offload the computing applications in overloaded ENs to other idle ENs, while it is a challenge to select appropriate offloading destination ENs. In this paper, we first consider edge computing framework for computation offloading in IoV under the architecture of 5G networks. We then formulate a multi-objective optimization problem to select suitable destination ENs, which aims to minimize the vehicle application offloading delay and offloading cost as well as realizing the load balance of ENs. Moreover, a computation offloading method for IoV, named COV, is designed to solve the multi-objective optimization problem. Finally, various simulation analyses demonstrate the effectiveness and efficiency of COV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ning Z, Hu X, Chen Z, Zhou M, Hu B, Cheng J, Obaidat MS (2018) A cooperative quality-aware service access system for social internet of vehicles. IEEE Internet Things J 5(4):2506–2517

    Article  Google Scholar 

  2. Alam KM, Saini M, Saddik AE (2015) Toward social internet of vehicles: concept, architecture, and applications. IEEE Access 3:343–357

    Article  Google Scholar 

  3. Cheng J, Cheng J, Zhou M, Liu F, Gao S, Liu C (2015) Routing in internet of vehicles: a review. IEEE Trans Intell Transp Syst 16(5):2339–2352

    Article  Google Scholar 

  4. Kaiwartya O, Abdullah AH, Cao Y, Prasad M, Lin CT, Liu X, Altameem A (2016) Internet of vehicles: motivation, layered architecture network model challenges and future aspects. IEEE Access 4:5356–5373

    Article  Google Scholar 

  5. Zhang Y, Xiang Y, Zhang LY, Rong Y, Guo S (2019) Secure wireless communications based on compressive sensing: a survey. IEEE Commun Surv Tutor 21(2):1093–1111

    Article  Google Scholar 

  6. Jin J, Gubbi J, Marusic S, Palaniswami M (2014) An information framework for creating a smart city through internet of things. IEEE Internet Things J 1(2):112–121

    Article  Google Scholar 

  7. Belavadi SS, Malik V, Udayakumar T, Srinivas A, Mohan R (2017) IoV based dynamic batch formation and scheduling technique for driverless vehicles. In: IEEE Region 10 Symposium (TENSYMP), pp 1–6

  8. Giordani M, Mezzavilla M, Zorzi M (2016) Initial access in 5G mm-wave cellular networks. IEEE Commun Mag 54(11):40–47

    Article  Google Scholar 

  9. Giordani M, Mezzavilla M, Barati N, Rangan S, Zorzi M (2016) Comparative analysis of initial access techniques in 5G mmwave cellular networks. In: Conference on Information Science and Systems, pp 268–273

  10. Mi J, Wang K, Li P, Guo S, Sun Y, Wang K (2018) Software-defined green 5G system for big data. IEEE Commun Mag 56(11):116–123

    Article  Google Scholar 

  11. Giordani M, Mezzavilla M, Rangan S, Zorzi M (2018) An efficient uplink multi-connectivity scheme for 5G mm wave control plane applications. IEEE Trans Wirel Commun 17(10):6806–6821

    Article  Google Scholar 

  12. Zeng D, Zhang J, Gu L, Guo S, Luo J (2018) Energy-efficient coordinated multipoint scheduling in green cloud radio access network. IEEE Trans Veh Technol 67(10):9922–9930

    Article  Google Scholar 

  13. Liu C, Li M, Hanly SV, Whiting P, Collings IB (2018) Millimeter-wave small cells: base station discovery, beam alignment, and system design challenges. IEEE Wirel Commun 25(4):40–46

    Article  Google Scholar 

  14. Boccardi F, Heath RW, Lozano A, Marzetta TL, Popovski P (2014) Five disruptive technology directions for 5G. IEEE Commun Mag 52(2):74–80

    Article  Google Scholar 

  15. Feng J, Liu Z, Wu C, Ji Y (2017) Ave: Autonomous vehicular edge computing framework with ACO-based scheduling. IEEE Trans Veh Technol 66(12):10660–10675

    Article  Google Scholar 

  16. Zhang K, Mao Y, Leng S, He Y, Zhang Y (2017) Mobile-edge computing for vehicular networks: a promising network paradigm with predictive offloading. IEEE Veh Technol Mag 12(2):36–44

    Article  Google Scholar 

  17. Hu YC, Patel M, Sabella D, Sprecher N, Young V (2015) Mobile edge computing—a key technology towards 5G. ETSI White Pap 11(11):1–16

    Google Scholar 

  18. Tran TX, Hajisami A, Pandey P, Pompili D (2017) Collaborative mobile edge computing in 5G networks: new paradigms, scenarios, and challenges. IEEE Commun Mag 55(4):54–61

    Article  Google Scholar 

  19. Eiza MH, Ni Q, Shi Q (2016) Secure and privacy-aware cloud-assisted video reporting service in 5G-enabled vehicular networks. IEEE Trans Veh Technol 65(10):7868–7881

    Article  Google Scholar 

  20. Khoda ME, Razzaque MA, Almogren A, Hassan MM, Alamri A, Alelaiwi A (2016) Efficient computation offloading decision in mobile cloud computing over 5G network. Mob Netw Appl 21(5):777–792

    Article  Google Scholar 

  21. Taleb T, Samdanis K, Mada B, Flinck H, Dutta S, Sabella D (2017) On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Commun Surv Tutor 19(3):1657–1681

    Article  Google Scholar 

  22. Nunna S, Kousaridas A, Ibrahim M, Dillinger M, Thuemmler C, Feussner H, Schneider A (2015) Enabling real-time context-aware collaboration through 5G and mobile edge computing. In: 2015 12th International Conference on Information Technology-New Generations (ITNG). IEEE, pp 601–605

  23. Kelly SDT, Suryadevara NK, Mukhopadhyay SC (2013) Towards the implementation of IoT for environmental condition monitoring in homes. IEEE Sens J 13(10):3846–3853

    Article  Google Scholar 

  24. Sarkar S, Chatterjee S, Misra S (2018) Assessment of the suitability of fog computing in the context of internet of things. IEEE Trans Cloud Comput 6(1):46–59

    Article  Google Scholar 

  25. Xu X, Li Y, Huang T, Xue Y, Peng K, Qi L, Dou W (2019) An energy-aware computation offloading method for smart edge computing in wireless metropolitan area networks. J Netw Comput Appl 133:75–85

    Article  Google Scholar 

  26. Datta SK, Haerri J, Bonnet C, Da Costa RF (2017) Vehicles as connected resources: opportunities and challenges for the future. IEEE Veh Technol Mag 12(2):26–35

    Article  Google Scholar 

  27. Cao Y, Chen Y (2017) QOE-based node selection strategy for edge computing enabled internet-of-vehicles (EC-IoV). In: Visual Communications and Image Processing (VCIP). IEEE, pp 1–4

  28. Xu X, Xue Y, Yuan Y, Qi L, Zhang X, Umer T, Wan S (2019) An edge computing-enabled computation offloading method with privacy preservation for internet of connected vehicles. Future Gener Comput Syst 96:89–100

    Article  Google Scholar 

  29. Wang K, Yin H, Quan W, Min G (2018) Enabling collaborative edge computing for software-defined vehicular networks. IEEE Netw 99:1–6

    Google Scholar 

  30. Liu J, Wang W, Li D, Wan S, Liu H (2019) Role of gifts in decision making: an endowment effect incentive mechanism for offloading in the IoV. IEEE Internet Things J 6(4):6933–6951

    Article  Google Scholar 

  31. Wang X, Yang LT, Li H, Lin M, Han J, Apduhan BO (2019) NQA: a nested anti-collision algorithm for RFID systems. ACM Trans Embed Comput Syst (TECS) 18(4):32

    Google Scholar 

  32. Xu X, Fu S, Yuan Y, Luo Y, Qi L, Lin W, Dou W (2019) Multi-objective computation offloading for workflow management in cloudlet-based mobile cloud using NSGA-II. Comput Intell 35(3):476–495. https://doi.org/10.1111/coin.12197

    Article  MathSciNet  Google Scholar 

  33. Baktir AC, Ozgovde A, Ersoy C (2017) How can edge computing benefit from software-defined networking: a survey, use cases, and future directions. IEEE Commun Surv Tutor 19(4):2359–2391

    Article  Google Scholar 

  34. Kumar N, Zeadally S, Rodrigues JJ (2016) Vehicular delay-tolerant networks for smart grid data management using mobile edge computing. IEEE Commun Mag 54(10):60–66

    Article  Google Scholar 

  35. Zhu J, Chan DS, Prabhu MS, Natarajan P, Hu H, Bonomi F (2013) Improving web sites performance using edge servers in fog computing architecture. In: 2013 IEEE Seventh International Symposium on Service-Oriented System Engineering, pp 320–323

  36. Zhang K, Mao Y, Leng S, Zhao Q, Li L, Peng X, Pan L, Maharjan S, Zhang Y (2016) Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE Access 4:5896–5907

    Article  Google Scholar 

  37. Chen X, Pu L, Gao L, Wu W, Wu D (2017) Exploiting massive D2D collaboration for energy-efficient mobile edge computing. IEEE Wirel Commun 24(4):64–71

    Article  Google Scholar 

  38. Guo J, Zhang H, Yang L, Ji H, Li X (2017) Decentralized computation offloading in mobile edge computing empowered small-cell networks. In: Globecom Workshops (GC Wkshps). IEEE, pp 1–6

  39. Yang L, Zhang H, Li M, Guo J, Ji H (2018) Mobile edge computing empowered energy efficient task offloading in 5G. IEEE Trans Veh Technol 67(7):6398–6409

    Article  Google Scholar 

  40. Bastug E, Bennis M, Debbah M (2014) Living on the edge: the role of proactive caching in 5G wireless networks. IEEE Commun Mag 52(8):82–89

    Article  Google Scholar 

  41. Agiwal M, Roy A, Saxena N (2016) Next generation 5G wireless networks: a comprehensive survey. IEEE Commun Surv Tutor 18(3):1617–1655

    Article  Google Scholar 

  42. Xu X, Liu Q, Luo Y, Peng K, Zhang X, Meng S, Qi L (2019) A computation offloading method over big data for IoT-enabled cloud-edge computing. Future Gener Comput Syst 95:522–533

    Article  Google Scholar 

  43. Ginting G, Fadlina, Mesran, Siahaan APU, Rahim R (2017) Technical approach of TOPSIS in decision making. Int J Recent Trends Eng Res 3(8):58–64. https://doi.org/10.23883/IJRTER.2017.3388.WPYUJ

    Article  Google Scholar 

  44. Wan S, Zhao Y, Wang T, Gu Z, Abbasi QH, Choo KKR (2019) Multi-dimensional data indexing and range query processing via Voronoi diagram for internet of things. Future Gener Comput Syst 91:382–391

    Article  Google Scholar 

  45. Gao Z, Wang DY, Wan SH, Zhang H, Wang YL (2019) Cognitive-inspired class-statistic matching with triple-constrain for camera free 3D object retrieval. Future Gener Comput Syst 94:641–653

    Article  Google Scholar 

  46. Gao Z, Xuan HZ, Zhang H, Wan S, Choo KKR (2019) Adaptive fusion and category-level dictionary learning model for multi-view human action recognition. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2019.2911669

    Article  Google Scholar 

  47. Wang P, Zhu Z, Wang Y (2016) A novel hybrid MCDM model combining the SAW, TOPSIS and GRA methods based on experimental design. Inf Sci 345:27–45

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China under Grant No. 61702277.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, S., Li, X., Xue, Y. et al. Efficient computation offloading for Internet of Vehicles in edge computing-assisted 5G networks. J Supercomput 76, 2518–2547 (2020). https://doi.org/10.1007/s11227-019-03011-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-019-03011-4

Keywords

Navigation