Skip to main content
Log in

Cellular Automata as the basis of effective and realistic agent-based models of crowd behavior

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The Cellular Automata (CA) paradigm has been recognized as an effective approach used in the modeling and simulation of complex systems. However, its classical form of a homogeneous and synchronous CA has a limited field of applications. For practical applications, non-homogeneous and asynchronous CAs with hybrid technological construction are especially useful in modeling and simulation. In this article, the authors focus on crowd simulations based on CA and agent-based modeling approaches. Basic technical aspects of large-scale crowd simulations are presented: specifically proposed architecture, our view on synchronization patterns, as well as hierarchy of objects in logic and data layer. A new method of agent conflict resolution is also proposed. Such an approach was successfully applied in the Allianz Arena stadium model, and other large-scale simulations developed by the authors. Thus, finally, practical applications of the models are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. Currently the model is developed without a force component due to limited efficiency [37].

  2. The setup of a performance test and a brief analysis of computational and memory complexity has been presented in [37].

References

  1. Albahari J, Albahari B (2010) C# 4.0 in a Nutshell: The Definitive Reference, 4th edn. OReilly Media, Inc., Newton

  2. Bandini S, Manzoni S, Vizzari G (2004) Situated cellular agents: a model to simulate crowding dynamics. Trans Inf E 87D(3):669–676

    Google Scholar 

  3. Blue V, Adler J (1999) Cellular automata microsimulation of bidirectional pedestrian flows. J Transp Res Board 1678(1):135–141

    Article  Google Scholar 

  4. Burstedde C, Klauck K, Schadschneider A, Zittartz J (2001) Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys A 295(3–4):507–525

    Article  MATH  Google Scholar 

  5. Chraibi M, Seyfried A, Schadschneider A (2010) Generalized centrifugal-force model for pedestrian dynamics. Phys Rev E 82:046111. doi:10.1103/PhysRevE.82.046111

    Article  Google Scholar 

  6. Coscia V, Canavesio C (2008) First order macroscopic modelling of human crowd dynamics. Math Models Methods Appl Sci 18:1217–1247

    Article  MathSciNet  MATH  Google Scholar 

  7. Daamen W (2004) Modelling passenger flows in public transport facilities. Ph.D. thesis, Delft University of Technology, The Netherlands

  8. Dietrich F, Koester G, Seitz M, von Sivers I (2014) Bridging the gap: from cellular automata to differential equation models for pedestrian dynamics. J Comput Sci 5(5):841–846. doi:10.1016/j.jocs.2014.06.005

    Article  Google Scholar 

  9. Dudek-Dyduch E, Was J (2006) Knowledge representation of pedestrian dynamics in crowd: formalism of cellular automata. In: Artificial Intelligence and Soft Computing—ICAISC 2006, 8th International Conference, Proceedings. Zakopane, Poland, pp 1101–1110

  10. Ezaki T, Yanagisawa D, Ohtsuka K, Nishinari K (2012) Simulation of space acquisition process of pedestrians using Proxemic Floor Field Model. Phys A 391(1–2):291–299

    Article  Google Scholar 

  11. Fowler M (2002) Patterns of enterprise application architecture. Addison-Wesley Longman Publishing Co. Inc, Boston

    Google Scholar 

  12. Fukui M, Ishibashi Y (1999) Self-organized phase transitions in cellular automaton models for pedestrians. J Phys Soc Jpn 68(8):2861–2863. doi:10.1143/JPSJ.68.2861

    Article  Google Scholar 

  13. Gamma E, Helm R, Johnson RE, Vlissides J (1995) Design patterns: elements of reusable object-oriented software. Addison-Wesley, Reading

    MATH  Google Scholar 

  14. Georgoudas IG, Koltsidas G, Sirakoulis GC, Andreadis IT (2010) A cellular automaton model for crowd evacuation and its auto-defined obstacle avoidance attribute. In: Proceedings of the 9th international conference on Cellular automata for research and industry, ACRI’10. Springer, Berlin, Heidelberg. pp 455–464. http://dl.acm.org/citation.cfm?id=1927432.1927488

  15. Gwizdalla TM (2015) Some properties of the floor field cellular automata evacuation model. Phys A 419:718–728. doi:10.1016/j.physa.2014.10.070

    Article  Google Scholar 

  16. Hrabak P, Bukacek M, Krbalek M (2013) Cellular model of room evacuation based on occupancy and movement prediction: Comparison with experimental study. J Cellular Autom 8(5–6):383–393

    MathSciNet  Google Scholar 

  17. Ingerson T, Buvel R (1984) Structure in asynchronous cellular automata. Phys D 10(1–2):59–68

    Article  MathSciNet  Google Scholar 

  18. ISO 16730:2008(E) Fire safety engineering—Assessment verification and validation of calculation methods. Tech Rep ISO

  19. Karmani RK, Chen N, Su BY, Shali A, Johnson R (2009) Barrier synchronization pattern. Computer Science Department University of Illinois and EECS Department University of California

  20. Kauffman S (1984) Emergent properties in random complex automata. Phys D 10:145–156

    Article  MathSciNet  Google Scholar 

  21. Kirik E, Malyshev A (2014) On validation of sigmaeva pedestrian evacuation computer simulation module with bottleneck flow. J Comput Sci 5(5):847–850. doi:10.1016/j.jocs.2014.05.002

    Article  Google Scholar 

  22. Kluepfel H (2003) A cellular automaton model for crowd movement and egress simulation. Ph.D. thesis, University Duisburg–Essen

  23. Klüpfel H, Meyer-König T, Wahle J, Schreckenberg M (2000) Microscopic simulation of evacuation processes on passenger ships. In: Bandini S, Worsch T (eds) ACRI 2000. Springer, London, pp 63–71

    Google Scholar 

  24. Lubaś R, Miller J, Mycek M, Porzycki J, Wąs J (2013) Three different approaches in pedestrian dynamics modeling—a case study. In: Zamojski W, Mazurkiewicz J, Sugier J, Walkowiak T, Kacprzyk J (eds) New results in dependability and computer systems, advances in intelligent systems and computing, vol. 224. Springer International Publishing, New York, pp 285–294

  25. Masakuni M, Tunemasa I, Takashi N (1999) Jamming transition in pedestrian counter flow. Phys A 267(3–4):487–498

    Google Scholar 

  26. Musse SR, Thalmann D (2001) Hierarchical model for real time simulation of virtual human crowds. IEEE Trans Visual Comput Graphics 7:152–164

    Article  Google Scholar 

  27. Nishinari K, Kirchner A, Namazi A, Schadschneider A (2004) Extended floor field CA model for evacuation dynamics. IEICE Trans Inf Syst E87(D):726–732

    Google Scholar 

  28. Porzycki J, Lubaś R, Mycek M, Wąs J (2014) Dynamic data—driven simulation of pedestrian movement with automatic validation. Traffic and Granular Flow ’13 proceedings (in print)

  29. Ronchi E, Kuligowski ED, Reneke PA, Peacock RD, Nilsson D (2013) Nist technical note 1822, the process of verification and validation of building fire evacuation models. Tech. rep, NIST

  30. Schadschneider A, Klingsch W, Klupfel H, Kretz T, Rogsch C, Seyfried A (2011) Evacuation dynamics: empirical results, modeling and applications. In: Extreme Environmental Events. Springer, New York, pp 517–550

  31. Schadschneider A, Seyfried A (2009) Validation of CA models of pedestrian dynamics with fundamental diagrams. Cybern Syst 40:367–389

  32. Viswanathan V, Lee C, Lees M, Cheong S, Sloot P (2014) Quantitative comparison between crowd models for evacuation planning and evaluation. Eur Phys J B 87(2):27. doi:10.1140/epjb/e2014-40699-x

    Article  MathSciNet  Google Scholar 

  33. Wagoum K, Ulrich A, Steffen B, Seyfried A (2012) Runtime optimisation approaches for a real-time evacuation assistant. Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp 386–395

  34. Wąs J (2010) Experiments on evacuation dynamics for different classes of situations. In: Klingsch WWF, Rogsch C, Schadschneider A, Schreckenberg M (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, Heidelberg, pp 225–232. doi:10.1007/978-3-642-04504-2-17

  35. Wąs J, Gudowski B, Matuszyk PJ (2006) New cellular automata model of pedestrian representation. Cellular Automata, Lecture Notes in Computer Science, vol 4173. Springer, Berlin, Heidelberg, pp 724–727

  36. Wąs J, Gudowski B, Matuszyk PJ (2006) Social distances model of pedestrian dynamics. In: Proceedings of the 7th international conference on Cellular Automata for Research and Industry, ACRI. Springer, Berlin, Heidelberg, pp 492–501

  37. Wąs J, Lubaś R (2013) Adapting social distances model for mass evacuation simulation. J Cellular Autom 8:395–405

    Google Scholar 

  38. Wąs J, Lubaś R (2014) Towards realistic and effective agent-based models of crowd dynamics. Neurocomputing 146:199–209. doi:10.1016/j.neucom.2014.04.057

    Article  Google Scholar 

  39. Weidmann U (1992) Transporttechnik der Fussganger—Transporttechnische Eigenschaften des Fussgangerverkehrs, Literaturauswertung, Schriftenreihe des IVT. Tech. Rep. 90, Institut fur Verkehrsplanung und Transportsysteme, Zurich

  40. Zia K, Ferscha A, Riener A, Wirz M, Roggen D, Kloch K, Lukowicz P (2010) Pervasive computing in the large: the Socionical approach. In: Proceedings of the 8th International Conference on Pervasive Computing, Helsinki, Finland. Springer, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Lubaś.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubaś, R., Wąs, J. & Porzycki, J. Cellular Automata as the basis of effective and realistic agent-based models of crowd behavior. J Supercomput 72, 2170–2196 (2016). https://doi.org/10.1007/s11227-016-1718-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-016-1718-7

Keywords

Navigation