Skip to main content
Log in

An efficient parallel solution for Caputo fractional reaction–diffusion equation

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The computational complexity of Caputo fractional reaction–diffusion equation is \(O(MN^2)\) compared with \(O(MN)\) of traditional reaction–diffusion equation, where \(M\), \(N\) are the number of time steps and grid points. A efficient parallel solution for Caputo fractional reaction–diffusion equation with explicit difference method is proposed. The parallel solution, which is implemented with MPI parallel programming model, consists of three procedures: preprocessing, parallel solver and postprocessing. The parallel solver involves the parallel tridiagonal matrix vector multiplication, vector vector addition and constant vector multiplication. The sum of constant vector multiplication is optimized. As to the authors’ knowledge, this is the first parallel solution for Caputo fractional reaction–diffusion equation. The experimental results show that the parallel solution compares well with the analytic solution. The parallel solution on single Intel Xeon X5540 CPU runs more than three times faster than the serial solution on single X5540 CPU core, and scales quite well on a distributed memory cluster system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Campos R, Rico-Melgoza J, Chvez E (2012) A new formulation of the fast fractional fourier transform. SIAM J Sci Comput 34(2):A1110–A1125. doi:10.1137/100812677

    Google Scholar 

  2. Cao X, Mo Z, Liu X, Xu X, Zhang A (2011) Parallel implementation of fast multipole method based on jasmin. Sci China Inform Sci 54:757–766

    Article  MathSciNet  Google Scholar 

  3. Cecilia J, Abellán J, Fernández J, Acacio M, Garca J, Ujaldn M (2012) Stencil computations on heterogeneous platforms for the jacobi method: Gpus versus cell be. J Supercomput 62:787–803. doi:10.1007/s11227-012-0749-y

    Article  Google Scholar 

  4. Chen J (2007) An implicit approximation for the caputo fractional reaction-dispersion equation (in chinese). J Xiamen Univ (Nat Sci) 46(5):616–619

    Google Scholar 

  5. Chen J, Liu F, Turner I, Anh V (2008) The fundamental and numerical solutions of the riesz space fractional reaction-dispersion equation. ANZIAM J 50:45–57

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen S, Jiang X (2012) Analytical solutions to time-fractional partial differential equations in a two-dimensional multilayer annulus. Phys A Stat Mech Appl 391(15):3865–3874. doi:10.1016/j.physa.2012.03.014

    Article  MathSciNet  Google Scholar 

  7. Diethelm K (2011) An efficient parallel algorithm for the numerical solution of fractional differential equations. Fract Calc Appl Anal 14:475–490. doi:10.2478/s13540-011-0029-1

    Article  MATH  MathSciNet  Google Scholar 

  8. Dursun H, Kunaseth M, Nomura KI, Chame J, Lucas R, Chen C, Hall M, Kalia R, Nakano A, Vashishta P (2012) Hierarchical parallelization and optimization of high-order stencil computations on multicore clusters. J Supercomput 62:946–966. doi:10.1007/s11227-012-0764-z

    Article  Google Scholar 

  9. Fatone L, Giacinti M, Mariani F, Recchioni M, Zirilli F (2012) Parallel option pricing on gpu: barrier options and realized variance options. J Supercomput 62:1480–1501. doi:10.1007/s11227-012-0813-7

    Article  Google Scholar 

  10. Gafiychuk V, Datsko B, Meleshko V (2008) Mathematical modeling of time fractional reaction-diffusion systems. J Comput Appl Math 220(1):215–225. doi:10.1016/j.cam.2007.08.011

    Article  MATH  MathSciNet  Google Scholar 

  11. Gong C, Bao W, Tang G (2013) A parallel algorithm for the riesz fractional reaction-diffusion equation with explicit finite difference method. Fract Calc Appl Anal 16(3):654–669

    Article  MathSciNet  Google Scholar 

  12. Gong C, Liu J, Chi L, Huang H, Fang J, Gong Z (2011) GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method. J Comput Phys 230(15):6010–6022. doi:10.1016/j.jcp.2011.04.010

    Article  MATH  Google Scholar 

  13. Gong C, Liu J, Huang H, Gong Z (2012) Particle transport with unstructured grid on gpu. Comput Phys Commun 183(3):588–593. doi:10.1016/j.cpc.2011.12.002

    Article  Google Scholar 

  14. Goude A, Engblom S (2012) Adaptive fast multipole methods on the gpu. J Supercomput 1–22. doi:10.1007/s11227-012-0836-0

  15. Haubold H, Mathai A, Saxena R (2011) Further solutions of fractional reactiondiffusion equations in terms of the h-function. J Comput Appl Math 235(5):1311–1316. doi:10.1016/j.cam.2010.08.016

    Article  MATH  MathSciNet  Google Scholar 

  16. Hennessy JL, Patterson DA (2012) Computer architecture: a quantitative approach. Elsevier, Amsterdam

  17. Henry B, Wearne S (2000) Fractional reaction-diffusion. Phys A Stat Mech Appl 276(3):448–455. doi:10.1016/S0378-4371(99)00469-0

    Google Scholar 

  18. Huang F, Liu F (2005) The time fractional diffusion equation and the advection-dispersion equation. ANZIAM J 46(3):317–330

    Article  MATH  MathSciNet  Google Scholar 

  19. Keshavarz-Kohjerdi F, Bagheri A (2013) An efficient parallel algorithm for the longest path problem in meshes. J Supercomput 1–19. doi:10.1007/s11227-012-0852-0. http://dx.doi.org/10.1007/s11227-012-0852-0

  20. Klages R, Radons G, Sokolov I (2008) Anomalous transport: foundations and applications. Wiley, Weinheim

    Book  Google Scholar 

  21. Li C, Zeng F, Liu F (2012) Spectral approximations to the fractional integral and derivative. Fract Calc Appl Anal 15:383–406. doi:10.2478/s13540-012-0028-x

  22. Li R, Saad Y (2012) Gpu-accelerated preconditioned iterative linear solvers. J Supercomput 1–24. doi:10.1007/s11227-012-0825-3

  23. Li X, Xu C (2009) A space-time spectral method for the time fractional diffusion equation. SIAM J Numer Anal 47(3):2108–2131. doi:10.1137/080718942

    Article  MATH  MathSciNet  Google Scholar 

  24. Liu Q, Liu F, Turner I, Anh V (2009) Numerical simulation for the 3d seepage flow with fractional derivatives in porous media. IMA J Appl Math 74(2):201–229. doi:10.1093/imamat/hxn044

    Article  MATH  MathSciNet  Google Scholar 

  25. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  26. Qi H, Jiang X (2011) Solutions of the space-time fractional cattaneo diffusion equation. Phys A Stat Mech Appl 390(11):1876–1883. doi:10.1016/j.physa.2011.02.010

    Article  MATH  MathSciNet  Google Scholar 

  27. Rida S, El-Sayed A, Arafa A (2010) On the solutions of time-fractional reactiondiffusion equations. Commun Nonlinear Sci Numer Simul 15(12):3847–3854. doi:10.1016/j.cnsns.2010.02.007

    Article  MATH  MathSciNet  Google Scholar 

  28. Salvadore F, Bernardini M, Botti M (2013) Gpu accelerated flow solver for direct numerical simulation of turbulent flows. J Comput Phys 235:129–142. doi:10.1016/j.jcp.2012.10.012

    Article  MathSciNet  Google Scholar 

  29. Saxena R, Mathai A, Haubold H (2006) Fractional reaction-diffusion equations. Astrophys Space Sci 305:289–296. doi:10.1007/s10509-006-9189-6

    Article  MATH  Google Scholar 

  30. Saxena R, Mathai A, Haubold H (2006) Solution of generalized fractional reaction-diffusion equations. Astrophys Space Sci 305:305–313. doi:10.1007/s10509-006-9191-z

    Article  MATH  Google Scholar 

  31. Shen S, Liu F, Anh V, Turner I (2008) The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation. IMA J Appl Math 73(6):850–872. doi:10.1093/imamat/hxn033

    Article  MATH  MathSciNet  Google Scholar 

  32. Teijeiro C, Sutmann G, Taboada G, Tourio J (2012) Parallel simulation of brownian dynamics on shared memory systems with openmp and unified parallel c. J Supercomput 1–13. doi:10.1007/s11227-012-0843-1

  33. Williams S, Oliker L, Vuduc R, Shalf J, Yelick K, Demmel J (2009) Optimization of sparse matrixvector multiplication on emerging multicore platforms. Parallel Comput 35(3):178–194. doi:10.1016/j.parco.2008.12.006

    Article  Google Scholar 

  34. Xu Y, He Z (2011) The short memory principle for solving abel differential equation of fractional order. Comput Math Appl 62(12):4796–4805. doi:10.1016/j.camwa.2011.10.071

    Article  MATH  MathSciNet  Google Scholar 

  35. Yu Q, Liu F, Anh V, Turner I (2008) Solving linear and non-linear space-time fractional reaction-diffusion equations by the adomian decomposition method. Int J Numer Methods Eng 74(1):138–158. doi:10.1002/nme.2165

    Article  MATH  MathSciNet  Google Scholar 

  36. Hang X, Liu J, Wei L, Ma C. Finite element method for grwünwaldletnikov time-fractional partial differential equation. Appl Anal 1–12. doi:10.1080/00036811.2012.718332

  37. Hang Y, Sun Z, Zhao X (2012) Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J Numer Anal 50(3):1535–1555. doi:10.1137/110840959

    Article  MathSciNet  Google Scholar 

  38. Zhang Z, Wang K, Li Q (2013) Accelerating a three-dimensional moc calculation using gpu with cuda and two-level gcmfd method. Ann Nucl Energy 62:445–451

    Article  MathSciNet  Google Scholar 

  39. Huang P, Liu F, Anh V, Turner I (2009) Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process. IMA J Appl Math 74(5):645–667. doi:10.1093/imamat/hxp015

    Google Scholar 

Download references

Acknowledgments

This research work is supported by 973 Program of China under grant No. 61312701001. We would like to thank the anonymous reviewers for their helpful comments also.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunye Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, C., Bao, W., Tang, G. et al. An efficient parallel solution for Caputo fractional reaction–diffusion equation. J Supercomput 68, 1521–1537 (2014). https://doi.org/10.1007/s11227-014-1123-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-014-1123-z

Keywords

Navigation