Skip to main content
Log in

Fast parallel DNA-based algorithms for molecular computation: discrete logarithm

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Diffie and Hellman (IEEE Trans. Inf. Theory 22(6):644–654, 1976) wrote the paper in which the concept of a trapdoor one-way function was first proposed. The Diffie–Hellman public-key cryptosystem is an algorithm that converts input data to an unrecognizable encryption, and converts the unrecognizable data back into its original decryption form. The security of the Diffie–Hellman public-key cryptosystem is based on the difficulty of solving the problem of discrete logarithms. In this paper, we demonstrate that basic biological operations can be applied to solve the problem of discrete logarithms. In order to achieve this, we propose DNA-based algorithms that formally verify our designed molecular solutions for solving the problem of discrete logarithms. Furthermore, this work indicates that public-key cryptosystems based on the difficulty of solving the problem of discrete logarithms are perhaps insecure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feynman RP (1961) In: Gilbert DH (ed) Minaturization. Reinhold, New York, pp 282–296

    Google Scholar 

  2. Adleman L (1994) Molecular computation of solutions to combinatorial problems. Science 266(11):1021–1024

    Article  Google Scholar 

  3. Diffie W, Hellman M (1976) New directions in cryptography. IEEE Trans Inf Theory 22(6):644–654

    Article  MathSciNet  MATH  Google Scholar 

  4. Adleman L, Rothemund PWK, Roweis S, Winfree E (1999) On applying molecular computation to the data encryption standard. In: The 2nd annual workshop on DNA computing, Princeton University. DIMACS: series in discrete mathematics and theoretical computer science. Am Math Soc, Providence, pp 31–44

    Google Scholar 

  5. Guo M, Chang W-L, Ho M, Lu J, Cao J (2005) Is optimal solution of every NP-complete or NP-hard problem determined from its characteristic for DNA-based computing. BioSystems 80(1):71–82

    Article  Google Scholar 

  6. Muskulus M, Besozzi D, Brijder R, Cazzaniga P, Houweling S, Pescini D, Rozenberg G (2006) Cycles and communicating classes in membrane systems and molecular dynamics. Theor Comput Sci 372(2–3):242–266

    MathSciNet  Google Scholar 

  7. Reif JH, LaBean TH (2007) Autonomous programmable biomolecular devices using self-assembled DNA nanostructures. Commun ACM 50(9):46–53

    Article  Google Scholar 

  8. Wu G, Seeman NC (2006) Multiplying with DNA. Nat Comput 5(4):427–441

    Article  MathSciNet  MATH  Google Scholar 

  9. Macdonald J, Li Y, Sutovic M, Lederman H, Pendri K, Lu W, Andrews BL, Stefanovic D, Stojanovic MN (2006) Medium scale integration of molecular logic gates in an automaton. Nano Lett 6(11):2598–2603

    Article  Google Scholar 

  10. Ekani-Nkodo A, Kumar A, Fygenson DK (2004) Joining and scission in the self assembly of nanotubes from DNA tiles. Phys Rev Lett 93:268301

    Article  Google Scholar 

  11. Dehnert M, Helm WE, Hütt M-Th (2006) Informational structure of two closely related eukaryotic genomes. Phys Rev E 74:021913

    Article  MathSciNet  Google Scholar 

  12. Müller BK, Reuter A, Simmel FC, Lamb DC (2006) Single-pair FRET characterization of DNA tweezers. Nano Lett 6:2814–2820

    Article  Google Scholar 

  13. Dirks RM, Bois JS, Schaeffer JM, Winfree E, Pierce NA (2007) Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev 49(1):65–88

    Article  MathSciNet  MATH  Google Scholar 

  14. Lipton R (1995) DNA solution of hard computational problems. Science 268:542–545

    Article  Google Scholar 

  15. Yeh C-W, Chu C-P, Wu K-R (2006) Molecular solutions to the binary integer programming problem based on DNA computation. Biosystems 83(1):56–66

    Article  Google Scholar 

  16. Guo M, Ho M, Chang W-L (2004) Fast parallel molecular solution to the dominating-set problem on massively parallel bio-computing. Parallel Comput 30(9–10):1109–1125

    Article  MathSciNet  Google Scholar 

  17. Amos M (2005) Theoretical and experimental DNA computation. Springer, Berlin

    MATH  Google Scholar 

  18. Ho M, Chang W-L, Guo M, Yang LT (2004) Fast parallel solution for set-packing and clique problems by DNA-based computing. IEICE Trans Inf Syst E-87D(7):1782–1788

    Google Scholar 

  19. Chang W-L, Guo M, Ho M (2004) Towards solution of the set-splitting problem on gel-based DNA computing. Future Gener Comput Syst 20(5):875–885

    Article  Google Scholar 

  20. Chang W-L, Guo M (2003) Solving the set-cover problem and the problem of exact cover by 3-sets in the Adleman-Lipton’s model. BioSystems 72(3):263–275

    Article  MathSciNet  Google Scholar 

  21. Ho M (2005) Fast parallel molecular solutions for DNA-based supercomputing: the subset-product problem. BioSystems 80:233–250

    Article  Google Scholar 

  22. Henkel CV, Bäck T, Kok JN, Rozenberg G, Spaink HP (2007) DNA computing of solutions to knapsack problems. Biosystems 88(1–2):156–162

    Article  Google Scholar 

  23. Chang W-L (2007) Fast parallel DNA-based algorithms for molecular computation: the set-partition problem. IEEE Trans Nanobiosci 6(1):346–353

    Article  Google Scholar 

  24. Chang W-L, Ho M, Guo M (2005) Fast parallel molecular algorithms for DNA-based computation: factoring integers. IEEE Trans Nanobiosci 4(2):149–163

    Article  Google Scholar 

  25. Boneh D, Dunworth C, Lipton RJ (1996) Breaking DES using a molecular computer. In: Proceedings of the 1st DIMACS workshop on DNA based computers, 1995. DIMACS series in discrete mathematics and theoretical computer science, vol 27. Am Math Soc, Providence, pp 37–66

    Google Scholar 

  26. Zhang DY, Winfree E (2008) Dynamic allosteric control of noncovalent DNA catalysis reactions. J Am Chem Soc 130:13921–13926

    Article  Google Scholar 

  27. Chang W-L, Ho M, Guo M (2004) Molecular solutions for the subset-sum problem on DNA-based supercomputing. BioSystems 73(2):117–130

    Article  Google Scholar 

  28. Seelig G, Soloveichik D, Zhang D-Y, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314(5805):1585–1588

    Article  Google Scholar 

  29. Kari L, Konstantinidis S, Sosík P (2005) On properties of bond-free DNA languages. Theor Comput Sci 334(1–3):131–159

    Article  MATH  Google Scholar 

  30. Braich RS, Johnson C, Rothemund PWK, Hwang D, Chelyapov N, Adleman LM (2001) Solution of a satisfiability problem on a gel-based DNA computer. In: Proceedings of the 6th international conference on DNA computation. Lecture notes in computer science series, vol 2054. Springer, Berlin, pp 27–42

    Google Scholar 

  31. Adleman LM, Braich RS, Johnson C, Rothemund PWK, Hwang D, Chelyapov N (2002) Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296(5567):499–502

    Article  Google Scholar 

  32. Koblitz N (1987) A course in number theory and cryptography. Springer, Berlin. ISBN:0387942939

    MATH  Google Scholar 

  33. Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-key cryptosystem. Commun ACM 21:120–126

    Article  MathSciNet  MATH  Google Scholar 

  34. Blakley GR A computer algorithm for calculating product AB modulo M. IEEE Trans Comput c-32(5):497–500

  35. Adams RL, Knowler JT, Leader DP (1986) The biochemistry of the nucleic acids, 10th edn. Chapman & Hall, London

    Google Scholar 

  36. Watson J, Gilman M, Witkowski J, Zoller M (1992) Recombinant DNA, 2nd edn. Scientific American Books

  37. Breslauer K, Frank R, Blocker H, Marky L (1986) Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci 3746–3750

  38. Brown T (1993) Genetics: a molecular approach. Chapman & Hall, London

    Google Scholar 

  39. Shor PW (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Comput 26(5):1484–1509

    Article  MathSciNet  MATH  Google Scholar 

  40. Kershner RJ, Bozano LD, Micheel CM, Hung AH, Fornof AR, Cha JN, Rettner CT, Bersani M, Frommer J, Rothemund PWK, Wallraff GM (2009) Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat Nanotechnol 16:557–561

    Article  Google Scholar 

  41. Barish RD, Schulman R, Rothemund PWK, Winfree E (2009) An information-bearing seed for nucleating algorithmic self-assembly. PNAS 106:6054–6059

    Article  Google Scholar 

  42. Li K, Zou S, Xv J (2008) Fast parallel molecular algorithms for DNA-based computation: solving the elliptic curve discrete logarithm problem over GF(2n). J Biomed Biotechnol 2008:518093. doi:10.1155/2008/518093

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weng-Long Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, WL., Huang, SC., Lin, K.W. et al. Fast parallel DNA-based algorithms for molecular computation: discrete logarithm. J Supercomput 56, 129–163 (2011). https://doi.org/10.1007/s11227-009-0347-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-009-0347-9

Keywords

Navigation