Skip to main content
Log in

Structural Completeness in Relevance Logics

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

It is proved that the relevance logic \({\mathbf{R}}\) (without sentential constants) has no structurally complete consistent axiomatic extension, except for classical propositional logic. In fact, no other such extension is even passively structurally complete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, A. R., and N. D. Belnap, Jnr., Entailment: The Logic of Relevance and Necessity, Vol. 1, Princeton University Press, 1975.

  2. Bergman, C., Structural completeness in algebra and logic, in H. Andréka, J. D. Monk, and I. Nemeti (eds.), Algebraic Logic, Colloquia Mathematica Societatis János Bolyai, Vol. 54, North-Holland, Amsterdam, 1991, pp. 59–73.

  3. Blok, W. J., and D. Pigozzi, Algebraizable Logics, Memoirs of the American Mathematical Society, Vol. 396, American Mathematical Society, Providence, 1989.

  4. Burris, S., and H. P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics, Springer, New York, 1981.

  5. Cintula P., Metcalfe G.: Structural completeness in fuzzy logics. Notre Dame Journal of Formal Logic 50, 153–182 (2009)

    Article  Google Scholar 

  6. Cintula P., Metcalfe G.: Admissible rules in the implication-negation fragment of intuitionistic logic. Annals of Pure and Applied Logic 162, 162–171 (2010)

    Article  Google Scholar 

  7. Czelakowski, J., Protoalgebraic Logics, Kluwer, Dordrecht, 2001.

  8. Czelakowski, J., and W. Dziobiak, Congruence distributive quasivarieties whose finitely subdirectly irreducible members form a universal class, Algebra Universalis 27:128–149, 1990.

  9. Dunn, J. M., The Algebra of Intensional Logics, PhD thesis, University of Pittsburgh, 1966.

  10. Dunn, J. M., and G. Restall, Relevance logic and entailment, in D. Gabbay, (ed.), Handbook of Philosophical Logic, Vol. 8, 2nd edn., Kluwer, Dordrecht, 2001, pp. 1–128.

  11. Dzik, W., and M. M. Stronkowski, Almost structural completeness; an algebraic approach, Manuscript, 2014.

  12. Dziobiak, W., There are \({2^{\aleph_0}}\) logics with the relevance principle between R and RM, Studia Logica 42:49–61, 1983.

  13. Font J. M., Rodríguez G.: Note on algebraic models for relevance logic. Zeitschrift fuer Mathematische Logik und Grundlagen der Mathematik 36, 535–540 (1990)

    Article  Google Scholar 

  14. Font, J. M., R. Jansana, and D. Pigozzi, A survey of abstract algebraic logic, and Update, Studia Logica 74:13–97, 2003, and 91:125–130, 2009.

  15. Galatos N., Raftery J. G.: A category equivalence for odd Sugihara monoids and its applications. Journal of Pure and Applied Algebra 216, 2177–2192 (2012)

    Article  Google Scholar 

  16. Galatos, N., and J. G. Raftery, Idempotent residuated structures: some category equivalences and their applications, Transactions of American Mathematical Society 367:3189–3223, 2015.

  17. Galatos, N., P. Jipsen, T. Kowalski, and H. Ono, Residuated Lattices. An Algebraic Glimpse at Substructural Logics, Studies in Logic and the Foundations of Mathematics, Vol. 151, Elsevier, New York, 2007.

  18. Hsieh, A., and J. G. Raftery, Conserving involution in residuated structures, Mathematical Logic Quarterly 53:583–609, 2007.

  19. Makinson D.: A characterization of structural completeness of a structural consequence operation. Reports on Mathematical Logic 6, 99–102 (1976)

    Google Scholar 

  20. Meyer, R. K., and J. M. Dunn, E, R and \({\gamma}\), Journal of Symbolic Logic 34:460–474, 1969.

  21. Olson, J. S., and J. G. Raftery, Positive Sugihara monoids, Algebra Universalis 57:75–99, 2007.

  22. Olson, J. S., J. G. Raftery, and C. J. van Alten, Structural completeness in substructural logics, Logic Journal of the IGPL 16:453–495, 2008.

  23. Raftery, J. G., Admissible rules and the Leibniz hierarchy, Notre Dame Journal of Formal Logic, to appear.

  24. Rybakov, V. V., Admissibility of Logical Inference Rules, Studies in Logic and the Foundations of Mathematics, Vol. 136, Elsevier, Amsterdam, 1997.

  25. Świrydowicz K.: A remark on the maximal extensions of the relevant logic R. Reports on Mathematical Logic 29, 3–13 (1995)

    Google Scholar 

  26. Świrydowicz, K., There exist exactly two maximal strictly relevant extensions of the relevant logic R, Journal of Symbolic Logic 64:1125–1154, 1999.

  27. Wroński, A., Overflow rules and a weakening of structural completeness, in J. Sytnik-Czetwertyński, (ed.), Rozwa zania o Filozofii Prawdziwej. Jerzemu Perzanowskiemu w Darze, Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków, 2009, pp. 67–71.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Raftery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raftery, J.G., Świrydowicz, K. Structural Completeness in Relevance Logics. Stud Logica 104, 381–387 (2016). https://doi.org/10.1007/s11225-015-9644-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-015-9644-x

Keywords

Navigation