Skip to main content

Advertisement

Log in

Free Algebras in Varieties of Glivenko MTL-algebras Satisfying the Equation 2(x2) = (2x)2

  • Published:
Studia Logica Aims and scope Submit manuscript

An Erratum to this article was published on 30 June 2016

Abstract

The aim of this paper is to give a description of the free algebras in some varieties of Glivenko MTL-algebras having the Boolean retraction property. This description is given (generalizing the results of [9]) in terms of weak Boolean products over Cantor spaces. We prove that in some cases the stalks can be obtained in a constructive way from free kernel DL-algebras, which are the maximal radical of directly indecomposable Glivenko MTL-algebras satisfying the equation in the title. We include examples to show how we can apply the results to describe free algebras in some well known varieties of involutive MTL-algebras and of pseudocomplemented MTL-algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BIGELOW, D., and S. BURRIS, ‘Boolean algebras of factor congruences’, Acta Sci. Math. 54 (1990), 11–20.

    Google Scholar 

  2. BLOK, W. J., and I. FERREIRIM, ‘On the structure of hoops’, Algebra Univers. 43 (2000), 233–257.

    Article  Google Scholar 

  3. BLOK, W. J., and D. PIGOZZI, Algebraizable Logics, Mem. Amer. Math. Soc., 77 (1989), N. 396, vii + 78 pp.

    Google Scholar 

  4. BURRIS, S., and H. WERNER, ‘Sheaf constructions and their elementary properties’, Trans. Amer. Math. Soc. 248 (1979), 269–309.

    Article  Google Scholar 

  5. CIGNOLI, R., F. ESTEVA, L. GODO, and A. TORRENS, ‘Basic Logic is the Logic of continuous t-norms and their residua’, Soft Comput. 4 (2000), 106–112.

    Article  Google Scholar 

  6. CIGNOLI, R., and A. TORRENS, ‘Boolean products of MV-algebras: hypernormal MV-algebras’, J. Math. Anal. Appl. 99 (1996), 637–653.

    Article  Google Scholar 

  7. CIGNOLI, R., and A. TORRENS, ‘Free cancellative hoops’, Algebra Univer. 43 (2000), 213–216.

    Article  Google Scholar 

  8. CIGNOLI, R., and A. TORRENS, ‘An Algebraic Analysis of Product Logic’, Mufti. Val. Logic 5 (2000), 45–65.

    Google Scholar 

  9. ClGNOLI, R., and A. TORRENS, ‘Free algebras in varieties of BL-algebras with a Boolean retract’, Algebra Univers. 48 (2002), 55–79.

    Article  Google Scholar 

  10. CIGNOLI, R., and A. TORRENS, ‘Hajek basic fuzzy logic and Lukasiewicz infinite-valued logic’, Arch. Math. Logic 42 (2003), 361–370.

    Article  Google Scholar 

  11. CIGNOLI, R., and A. TORRENS, ‘Glivenko like theorems in natural expansions of BCK-logic’, Math. Log. Quart. 50 (2004), 111–125.

    Article  Google Scholar 

  12. CIGNOLI, R., and A. TORRENS, ‘Standard completeness of Hajek Basic Logic and decompositions of BL-chains’, Soft Comput. 9 (2005), 862–868.

    Article  Google Scholar 

  13. DAVEY, B., ‘Dualities for equational classes of Brouwerian algebras and Heyting algebras’, Trans. Amer. Math. Soc. 221 (1976), 119–146.

    Article  Google Scholar 

  14. Dl NOLA, A., and A. LETTIERI, ‘Equational characterization of all varieties of MV-algebras’, J. Algebra 221 (1999), 463–474.

    Article  Google Scholar 

  15. ESTEVA, F., J. GISPERT, L. GODO, and F. MONTAGNA, ‘On the standard and rational completeness of some axiomatic extensions of monoidal t-norm based logic’, Stud. Log. 71 (2002), 199–226.

    Article  Google Scholar 

  16. ESTEVA, F., and L. GODO, ‘Monoidal t-norm based logic: towards a logic for left-continuous t-norms’, Fuzzy Sets Syst. 124 (2001), 271–288.

    Article  Google Scholar 

  17. ESTEVA, F., L. GODO, P. HAJEK, and F. MONTAGNA, ‘Hoops and Fuzzy Logic’, J. Logic Computation 134 (2003), 531–555.

    Google Scholar 

  18. GISPERT I BRASO, J., ‘Axiomatic Extensions of the Nilpotent Minimum Logic’, Rep. Math. Logic. 37 (2003), 113–123.

    Google Scholar 

  19. HAJEK, P., Metamathematics of fuzzy logic, Kluwer, Dordrecht-Boston-London, 1998.

    Google Scholar 

  20. HORN, A., ‘Free L-algebras’, J. Symbolic Logic 34 (1969), 457–480.

    Google Scholar 

  21. HOHLE, U., ‘Commutative, residuated 1-monoids’, in U. Hohle and E. P. Klement, (eds.), Non-Classical Logics and their Applications to Fuzzy Subsets: A Handbook on the Mathematical Foundations of Fuzzy Set Theory, Kluwer, Boston, 1995, pp. 53–106.

    Google Scholar 

  22. JENEI, S., ‘On the structure of rotation-invariant semigroups’, Arch. Math. Logic 42 (2003), 489–514.

    Article  Google Scholar 

  23. JENEI, S. and F. MONTAGNA, ‘A Proof of Standard Completeness for Esteva and Godo's Logic MTL’, Stud. Log. 70 (2002), 183–192.

    Article  Google Scholar 

  24. KOWALSKI, T., and H. ONO, P,esiduated lattices: An algebraic glimpse at logics without contraction, JAIST preliminary report, 2000.

  25. MONTEIRO, A. A., ‘Sur les algebres de Heyting symmetriques’, Port. Math. 39 (1980), 1–237.

    Google Scholar 

  26. NOGUERA, C., F. ESTEVA, and J. GISPERT, ‘Perfect and bipartite IMTL-algebras and disconnected rotations of basic semihoops’, Arch. Math. Log. 44 (2005), 869–886.

    Article  Google Scholar 

  27. NOGUERA, C., F. ESTEVA, and J. GISPERT, ‘On some varieties of MTL-algebras’, Logic J. IGPL 13 (2005), 443–446.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Cignoli.

Additional information

Dedicated to the memory of Willem Johannes Blok

2000 Mathematics Subject Classification: 06D72, 06E15, 08B20.

The second author was partially supported by grants MTM2004-03101 and TIN2004-07933-C03-02 of M.E.C. of Spain

Dedicated to the memory of Willem Johannes Blok

An erratum to this article is available at http://dx.doi.org/10.1007/s11225-016-9678-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cignoli, R., Torrell, A.T. Free Algebras in Varieties of Glivenko MTL-algebras Satisfying the Equation 2(x2) = (2x)2. Stud Logica 83, 157–181 (2006). https://doi.org/10.1007/s11225-006-8302-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-006-8302-8

Keywords

Navigation