Skip to main content
Log in

Study on the Failure Mechanism of the Polymorphic Mixture for Remanufactured Machinery Parts

  • Published:
Strength of Materials Aims and scope

The polymorphic mixture failure mode for multiple heterogeneity of remanufactured (RM) machinery parts makes it difficult to assess their lifetime. The Weibull distribution failure model of RM parts (substrate, coating layer, bonding surface and sudden failure) is constructed with failure time statistics of the parts in service, the latter is used to characterize the failure patterns of RM parts. In view of the multiple heterogeneity of RM parts, the Kaplan–Meier type decoupling method is used to analyze four sets of failure statistics, and each state of the Weibull failure function of the above parts is solved. It reveals the in-service failure mechanism of polymorphic mixtures for multiple heterogeneity of RM machinery parts. The validity and feasibility of the model are verified by the case study. Research results provide the theoretical basis for the design and preparation of a RM alloy powder and the improvement of RM technology. Moreover, the method for lifetime prediction and failure time evaluation of RM parts is proposed and validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. B. S. Xu, Theory and Technology of Equipment Remanufacturing Engineering [in Chinese], National Defense Industrial Press, Beijing (2007).

    Google Scholar 

  2. C. Liu, “Tolerance redistributing of the reassembly dimensional chain on measure of uncertainty,” Entropy, 18, No. 10, 348 (2016).

    Article  Google Scholar 

  3. C. Liu, M. Liu, and L. Xing, “A research on the uncertainty measure and its application to the journal surface roughness of remanufactured engine crankshaft,” Automot. Eng., 37, No. 3, 341–345 (2015).

    Google Scholar 

  4. L. Hua, W. Tian, W. Liao, and Z. Chao, “Remaining life evaluation for remanufacturing blanks based on non-linear continuum fatigue damage model,” J. Mech. Eng., 51, No. 21, 132–136 (2015).

    Article  Google Scholar 

  5. C. Franke, B. Basdere, M. Clupek, and S. Seliger, “Remanufacturing of mobile phones: capacity, program and facility adaptation planning,” Omega, 34, No. 6, 562–570 (2006).

    Article  Google Scholar 

  6. M. Liu, C. Liu, M. Ge, et al., “The online quality control method for reassembly based on state space model,” J. Clean. Prod., 137, 644–651 (2016).

    Article  Google Scholar 

  7. B. Xu, S. Dong, and P. Shi, “States and prospects of China characterised quality guarantee technology system for remanufactured parts,” J. Mech. Eng., 49, No. 20, 84–90 (2013).

    Article  Google Scholar 

  8. H. D. Wang, Z. Zhang, G. Li, et al., “Investigation of contact fatigue failure mode and mechanism of plasma spraying coating,” Tribology, 32, No. 3, 251–257 (2012).

    Google Scholar 

  9. F. Li and H. Shen, “Analysis method of reliability in remanufacturing design based on knowledge reusing,” Mach. Tool Hydr., 38, No. 11, 144–146 (2010).

    Google Scholar 

  10. Y. Shen, S. Song, Y. Wang, and C. Du, “Reliability of welded surfacing layer for remanufacture of vehicle’s drive axle housing,” China Mech. Eng., 24, No. 5, 676–680 (2013).

    Google Scholar 

  11. H. Cao, S. Tong, H. Chen, and L. Shu, “Analysis of remanufacturing process and residual stress of axis parts based on thermal spraying,” China Mech. Eng., 25, No. 24, 3368–3372 (2014).

    Google Scholar 

  12. X. L. Lu, H. D. Wang, and B. S. Xu, “Research status of on-line monitoring of remanufacturing parts coatings in service process,” Nondestruct. Test., 35, No. 2, 18–22 (2013).

    Google Scholar 

  13. T. Zhang, Automobile Product Remanufacturing Model and Its Reliability Analysis [in Chinese], Jilin University (2011).

  14. Y. Zhao, J. Sun, and J. Li, “Research on microstructure properties and wear and corrosion resistance of FeCr repaired coating on KMN steel by laser cladding,” J. Mech. Eng., 51, No. 8, 37–43 (2015).

    Article  Google Scholar 

  15. J. X. Fang, S. Y. Dong, Y. J. Wang, et al., “The effects of solid-state phase transformation upon stress evolution in laser metal powder deposition,” Mater. Design, 87, 807–814 (2015).

    Article  Google Scholar 

  16. S. Wei, Y. Liu, H. Tian, et al., “Microwave absorption property of plasma spray W-type hexagonal ferrite coating,” J. Magn. Magn. Mater., 377, 419–423 (2015).

    Article  Google Scholar 

  17. C. Liu, Research on the On-Line Quality Control Mechanism of Remanufacturing Assembly Process for Complex Mechanical Products under Uncertainty [in Chinese], Hefei Polytechnic University (2016).

  18. H. Zhang, J. Yu, S. Hao, and Y. Peng, “Application of electro-magnetic heat effect on arresting the crack in remanufacturing blank,” J. Mech. Eng., 49, No. 7, 21–28 (2013).

    Article  Google Scholar 

  19. G. B. Zhang and S. H. Guo, “Reliability evaluation of machining tool center based on competing Weibull model,” Comput. Integr. Manuf. Syst., 21, No. 1, 180–186 (2015).

    Google Scholar 

  20. Q. Wang, “Some large sample results for a class of functionals of Kaplan–Meier estimator,” Acta Math. Sin., 14, No. 2, 191–200 (1998).

    Article  Google Scholar 

Download references

Acknowledgments

This research was jointly supported by the Research Project (No. 2016jb08) and Support Program (No. SZXYQNL2017005) of Suzhou University, Key Project of Natural Science Research in Universities of Anhui Province of China (No. KJ2017A438), Chinese Postdoctoral Science Foundation (No. 2017M611574), and Humanities and Social Science Research Project of the Ministry of Education of China (No. 17YJC630082).

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Prochnosti, No. 1, pp. 166 – 172, January – February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C.H., Li, W.Y., Rao, W.Z. et al. Study on the Failure Mechanism of the Polymorphic Mixture for Remanufactured Machinery Parts. Strength Mater 50, 151–156 (2018). https://doi.org/10.1007/s11223-018-9954-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-018-9954-0

Keywords

Navigation