Skip to main content
Log in

Conditions for the Transition from Nonlocalized to Localized Damage in Metals and Alloys. Part 1. Crack Sizes at Fatigue Limit

  • Scientific and Technical Section
  • Published:
Strength of Materials Aims and scope

The paper addresses special features of nonlocalized and localized fatigue damage in metals and alloys. The sizes of maximum fatigue cracks at a fatigue limit in metals and alloys of various grain sizes and strengths are analyzed. The authors discuss the linear and nonlinear fracture mechanics criteria that relate the fatigue crack sizes and the fatigue limits. The experimental values of the fatigue crack size are compared to those calculated by different criteria. Special features of initiation of nonpropagating fatigue cracks in the presence of stress concentrators are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. T. Troshchenko, “Nonlocalized fatigue damage of metals and alloys. Part 1. Inelasticity, investigation methods, and results,” Strength Mater., 37, No. 4, 337–356 (2005).

    Article  Google Scholar 

  2. V. T. Troshchenko, “Nonlocalized fatigue damage of metals and alloys. Part 2. Interrelation between fatigue and inelasticity,” Strength Mater., 37, No. 5, 443–459 (2005).

    Article  Google Scholar 

  3. V. T. Troshchenko, “Nonlocalized fatigue damage of metals and alloys. Part 3. Strain and energy criteria,” Strength Mater., 38, No. 1, 1–19 (2006).

    Article  Google Scholar 

  4. M. Klesnil and P. Lukas, Fatigue of Metallic Materials, Academia, Prague (1980).

    Google Scholar 

  5. V. V. Panasyuk (Ed.), Fracture Mechanics and Strength of Materials [in Russian], Handbook in 4 volumes. Vol. 4: Fatigue and Cyclic Fracture Toughness of Structural Materials, Naukova Dumka, Kiev (1990).

  6. A. Carpinteri (Ed.), Handbook of Fatigue: Crack Propagation in Metallic Structure, Elsevier, Amsterdam (1994).

    Google Scholar 

  7. V. T. Troshchenko and V. A. Dragan, “Laws of plastic strain and fatigue fracture of metals in torsion,” Strength Mater., 14, No. 5, 569–576 (1982).

    Article  Google Scholar 

  8. K. Tokaji, T. Ogama, and Y. Harads, “The growth of small fatigue cracks in a low carbon steel, the effect of microstructure and limitations of linear elastic fracture mechanics,” Fatigue Fract. Eng. Mater. Struct., 9, No. 3, 205–217 (1986).

    Article  Google Scholar 

  9. C. M. Suh, R. Yuuki, and H. Kitagawa, “Fatigue microcracks in low carbon steel,” Fatigue Fract. Eng. Mater. Struct., 8, No. 2, 193–203 (1985).

    Article  Google Scholar 

  10. K. Tokaji, T. Ogawa, and Y. Harada, “Åvaluation on limitation of linear elastic fracture mechanics for small fatigue crack growth,” Fatigue Fract. Eng. Mater. Struct., 10, No. 4, 281–289 (1987).

    Article  Google Scholar 

  11. K. Tokaji, T. Ogawa, Y. Harada, and Z. Ando, “Limitation of linear elastic fracture mechanics in respect of small fatigue cracks and microstructure,” Fatigue Fract. Eng. Mater. Struct., 9, No. 1, 1–14 (1986).

    Article  Google Scholar 

  12. M. Goto, “Statistical investigation of the behaviors of small crack and fatigue life in carbon steels whith different ferrite grain sizes,” Fatigue Fract. Eng. Mater. Struct., 17, No. 6, 635–649 (1994).

    Article  Google Scholar 

  13. M. Kage, K. Miller, and R. Smith, “Fatigue crack initiation and propagation in a low-carbon steel of two different grain sizes,” Fatigue Fract. Eng. Mater. Struct., 15, No. 8, 763–774 (1992).

    Article  Google Scholar 

  14. A. Tarnbull and E. R. De los Rios, “The effect of grain size on fatigue crack growth in an aluminium magnesium alloy,” Fatigue Fract. Eng. Mater. Struct., 18, No. 11, 1335–1366 (1995).

    Google Scholar 

  15. K. Tanaka, Y. Kakai, and O. Maekawa, “Microscopic study of fatigue crack initiation and early propagation in smooth specimen of low carbon steel,” J. Soc. Mater. Sci. Jap., 31, No. 343, 376–382 (1982).

    Article  Google Scholar 

  16. H. Kobayashi and H. Nakazawa, “A stress criterion for fatigue crack propagation in metals,” in: Proc. of the Int. Conf. on Mechanical Behavior of Materials (August 15–20, 1971), Vol. 2, Kyoto (1971), pp. 199–208.

  17. T. Kinio, M. Shimizu, K. Ymada, et al., “The role of prior austenite grains in fatigue crack initiation and propagation in low carbon martensite,” Fatigue Fract. Eng. Mater. Struct., 2, No. 3, 237–299 (1979).

    Article  Google Scholar 

  18. P. G. Forrest, Fatigue of Metals, Pergamon Press, Oxford (1962).

    Google Scholar 

  19. N. E. Frost, “A relation between the critical alternating propagations stress and crack length for mild steel,” Proc. Inst. Mech. Engrs., 173, 811–836 (1959).

    Article  Google Scholar 

  20. N. E. Frost, “Notch effects and the critical alternating stress required to propagate a crack in an aluminium alloy subject to fatigue loading,” J. Mech. Eng. Sci., No. 9, 109–119 (1960).

    Article  Google Scholar 

  21. N. E. Frost, “A note on the behavior of fatigue crack,” J. Mech. Phys. Solids, 9, 143–151 (1961).

    Article  Google Scholar 

  22. H. Kitagawa and S. Takahashi, “Applicability of fracture mechanics to very small cracks, or the cracks in the early stage,” in: Proc. of the Second Int. Conf. on Mechanical Behaviour of Materials, Boston, MA (1976), pp. 627–631.

  23. M. H. El Haddad, T. H. Topper, and K. N. Smith, “Prediction of non-propagating cracks,” Eng. Fract. Mech., 11, 573–584 (1979).

    Article  Google Scholar 

  24. M. D. Chapetti, “Fatigue propagation threshold of short cracks under constant amplitude loading,” Int. J. Fatigue, 25, 1319–1326 (2003).

    Article  Google Scholar 

  25. C. Santus and D. Taylor, “Physically short crack propagation in metals during high cycle fatigue,” Int. J. Fatigue, 31, 1356–1365 (2009).

    Article  Google Scholar 

  26. K. J. Miller, “The two thresholds of the fatigue behaviour,” Fatigue Fract. Eng. Mater. Struct., 16, No. 9, 931–939 (1993).

    Article  Google Scholar 

  27. W. O. Soboyejo, W. Shen, J. Lou, et al., “A probabilistic frame work for the modeling of fatigue in a lamellar XD TM gamma titanium aluminide alloy,” Int. J. Fatigue, 24, No. 1, 69–81 (2002).

    Article  Google Scholar 

  28. K. Tokaji, T. Ogawa, Y. Harada, and Z. Ando, “Limitations of linear elastic fracture mechanics in respect of small fatigue cracks and microstructure,” Fatigue Fract. Eng. Mater. Struct., 9, No. 3, 1–14 (1986).

    Article  Google Scholar 

  29. D. Taylor and J. F. Knott, “Fatigue crack propagation behaviors of short cracks: the effect of microstructure,” Fatigue Fract. Eng. Mater. Struct., 4, No. 2, 147–155 (1981).

    Article  Google Scholar 

  30. D. Taylor, “Euromech colloquim short fatigue crack,” Fatigue Fract. Eng. Mater. Struct., 5, No. 4, 305–309 (1982).

    Article  Google Scholar 

  31. K. J. Miller, “The short crack problem,” Fatigue Fract. Eng. Mater. Struct., 5, No. 3, 223–232 (1982).

    Article  Google Scholar 

  32. B. Atzori, P. Lazzarin, and G. Meneghetti, “Fracture mechanics and notch sensitivity,” Fatigue Fract. Eng. Mater. Struct., 26, No. 3, 257–267 (2002).

    Article  Google Scholar 

  33. J. R. Yates and M. W. Brown, “Prediction of the length of non-propagating fatigue cracks,” Fatigue Fract. Eng. Mater. Struct., 10, No. 3, 187–201 (1987).

    Article  Google Scholar 

  34. D. L. Du Quesnay, T. H. Topper, and M. T. Yu, “The effect of notch radius on the fatigue notch factor and the propagation of short cracks,” in: K. J. Miller and E. R. Delos Rios (Eds.), The Behaviors of Short Fatigue Cracks, Mechanical Engineering Publication, London (1986), pp. 323–335.

    Google Scholar 

  35. P. Lukas, L. Kunz, B. Weiss, and R. Stickler, “Notch size effect in fatigue,” Fatigue Fract. Eng. Mater. Struct., 12, No. 3, 175–186 (1989).

    Article  Google Scholar 

  36. R. A. Smith and K. J. Miller, “Prediction of fatigue regimes in notched components,” Int. J. Mech. Sci., 20, 201–206 (1978).

    Article  Google Scholar 

  37. J. C. Ting and F. V. Lawrence, “A crack closure model for predicting the threshold stresses of notches sensitivity,” Fatigue Fract. Eng. Mater. Struct., 16, No. 1, 93–114 (1993).

    Article  Google Scholar 

  38. M. M. Hammouda, R. A. Smith, and K. J. Miller, “Elastic plastic fracture mechanics for initiation and propagation of notch fatigue cracks,” Fatigue Fract. Eng. Mater. Struct., 2, No. 2, 139–154 (1979).

    Article  Google Scholar 

  39. P. Lukas, L. Kunz, B. Weiss, and R. Stickler, “Non-damaging notches in fatigue,” Fatigue Fract. Eng. Mater. Struct., 9, No. 3, 195–204 (1986).

    Article  Google Scholar 

  40. De-Guang Shang, Wei-Xing Yao, and De-Jan Wang, “A new approach to the determination of fatigue crack initiation size,” Int J. Fatigue, 20, No. 9, 683–687 (1998).

    Article  Google Scholar 

  41. M. Makkonen, “Statistical size effect in the fatigue limit of steel,” Int. J. Fatigue, 23, No. 5, 395–402 (2001).

    Article  Google Scholar 

  42. M. Makkonen, “Notch size effects in the fatigue limit of steel,” Int. J. Fatigue, 25, No. 1, 17–26 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Prochnosti, No. 3, pp. 5 – 20, May – June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troshchenko, V.T., Khamaza, L.A. Conditions for the Transition from Nonlocalized to Localized Damage in Metals and Alloys. Part 1. Crack Sizes at Fatigue Limit. Strength Mater 46, 303–314 (2014). https://doi.org/10.1007/s11223-014-9552-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-014-9552-8

Keywords

Navigation