Skip to main content
Log in

Bayesian nonparametric spectral density estimation using B-spline priors

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

We present a new Bayesian nonparametric approach to estimating the spectral density of a stationary time series. A nonparametric prior based on a mixture of B-spline distributions is specified and can be regarded as a generalization of the Bernstein polynomial prior of Petrone (Scand J Stat 26:373–393, 1999a; Can J Stat 27:105–126, 1999b) and Choudhuri et al. (J Am Stat Assoc 99(468):1050–1059, 2004). Whittle’s likelihood approximation is used to obtain the pseudo-posterior distribution. This method allows for a data-driven choice of the number of mixture components and the location of knots. Posterior samples are obtained using a Metropolis-within-Gibbs Markov chain Monte Carlo algorithm, and mixing is improved using parallel tempering. We conduct a simulation study to demonstrate that for complicated spectral densities, the B-spline prior provides more accurate Monte Carlo estimates in terms of \(L_1\)-error and uniform coverage probabilities than the Bernstein polynomial prior. We apply the algorithm to annual mean sunspot data to estimate the solar cycle. Finally, we demonstrate the algorithm’s ability to estimate a spectral density with sharp features, using real gravitational wave detector data from LIGO’s sixth science run, recoloured to match the Advanced LIGO target sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aasi, J., et al.: Advanced LIGO. Class. Quantum Gravity 32, 074001 (2015)

    Article  Google Scholar 

  • Abadie, J., et al.: All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Phys. Rev. D 85, 122007 (2012)

    Article  Google Scholar 

  • Abbott, B.P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016a)

    Article  MathSciNet  Google Scholar 

  • Abbott, B.P., et al.: GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016b)

    Article  Google Scholar 

  • Abbott, B.P., et al.: GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017a)

    Article  Google Scholar 

  • Abbott, B.P., et al.: GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118, 221101 (2017b)

    Article  Google Scholar 

  • Abbott, B.P., et al.: GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119, 141101 (2017c)

    Article  Google Scholar 

  • Abbott, B.P., et al.: GW170608: observation of a 19-solar-mass binary black hole coalescence. Pre-print, arXiv:1711.05578 (2017d)

  • Acernese, F., et al.: Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Gravity 32(2), 024001 (2015)

    Article  Google Scholar 

  • Barnett, G., Kohn, R., Sheather, S.: Bayesian estimation of an autoregressive model using Markov chain Monte Carlo. J. Econ. 74, 237–254 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Bartlett, M.S.: Periodogram analysis and continuous spectra. Biometrika 37, 1–16 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  • Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, New York (1991)

    Book  MATH  Google Scholar 

  • Brooks, S.P., Giudici, P., Roberts, G.O.: Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions. J. R. Stat. Soc.: Ser. B (Methodol.) 65, 3–55 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, B., Meyer, R.: Bayesian semiparametric modeling of survival data based on mixtures of B-spline distributions. Comput. Stat. Data Anal. 55, 1260–1272 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Carter, C.K., Kohn, R.: Semiparametric Bayesian inference for time series with mixed spectra. J. R. Soc. Ser. B 59, 255–268 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Chopin, N., Rousseau, J., Liseo, B.: Computational aspects of Bayesian spectral density estimation. J. Comput. Graph. Stat. 22, 533–557 (2013)

    Article  MathSciNet  Google Scholar 

  • Choudhuri, N., Ghosal, S., Roy, A.: Bayesian estimation of the spectral density of a time series. J. Am. Stat. Assoc. 99(468), 1050–1059 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Christensen, N.: LIGO S6 detector characterization studies. Class. Quantum Gravity 27, 194010 (2010)

    Article  Google Scholar 

  • Cogburn, R., Davis, H.R.: Periodic splines and spectral estimation. Ann. Stat. 2, 1108–1126 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Crandell, J.L., Dunson, D.B.: Posterior simulation across nonparametric models for functional clustering. Sankhya B 73, 42–61 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • de Boor, C.: B(asic)-spline basics. In: Piegl, L. (ed.) Fundamental Developments of Computer-Aided Geometric Modeling. Academic Press, Washington (1993)

    Google Scholar 

  • Earl, D.J., Deem, M.W.: Parallel tempering: theory, applications, and new perspectives. Phys. Chem. Chem. Phys. 7, 3910–3916 (2005)

    Article  Google Scholar 

  • Edwards, M.C., Meyer, R., Christensen, N.: Bayesian parameter estimation of core collapse supernovae using gravitational wave signals. Inverse Probl. 30, 114008 (2014)

    Article  MATH  Google Scholar 

  • Edwards, M.C., Meyer, R., Christensen, N.: Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis. Phys. Rev. D 92, 064011 (2015)

    Article  Google Scholar 

  • Edwards, M.C., Meyer, R., Christensen, N.: bsplinePsd: Bayesian power spectral density estimation using B-spline priors. R package (2017)

  • Einstein, A.: Approximative integration of the field equations of gravitation. Sitzungsberichte Preußischen Akademie der Wissenschaften 1916(Part 1), 688–696 (1916)

    MATH  Google Scholar 

  • Gangopadhyay, A.K., Mallick, B.K., Denison, D.G.T.: Estimation of the spectral density of a stationary time series via an asymptotic representation of the periodogram. J. Stat. Plan. Inference 75, 281–290 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis, 3rd edn. Chapman & Hall/CRC, Boca Raton (2013)

    MATH  Google Scholar 

  • Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern. Anal. Mach. Intell. 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  • Green, P.J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • Jara, A., Hanson, T.E., Quintana, F.A., Müller, P., Rosner, G.L.: DPpackage: Bayesian semi- and nonparametric modeling in R. J. Stat. Softw. 40, 1–30 (2011)

    Article  Google Scholar 

  • Kirch, C., Edwards, M.C., Meier, A., Meyer, R.: Beyond Whittle: nonparametric correction of a parametric likelihood with a focus on Bayesian time series analysis. Pre-print, arXiv:1701.04846v1 (2017)

  • Kooperberg, C., Stone, C.J., Truong, Y.K.: Rate of convergence for logspline spectral density estimation. J. Time Ser. Anal. 16, 389–401 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Lenhoff, M.W., Santner, T.J., Otis, J.C., Peterson, M.G., Williams, B.J., Backus, S.I.: Bootstrap prediction and confidence bands: a superior statistical method for the analysis of gait data. Gait Posture 9, 10–17 (1999)

    Article  Google Scholar 

  • Liseo, B., Marinucci, D., Petrella, L.: Bayesian semiparametric inference on long-range dependence. Biometrika 88, 1089–1104 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Littenberg, T.B., Cornish, N.J.: Bayesian inference for spectral estimation of gravitational wave detector noise. Phys. Rev. D 91, 084034 (2015)

    Article  Google Scholar 

  • Littenberg, T.B., Coughlin, M., Farr, B., Farr, W.M.: Fortifying the characterization of binary mergers in LIGO data. Phys. Rev. D 88, 084044 (2013)

    Article  Google Scholar 

  • Macaro, C.: Bayesian non-parametric signal extraction for Gaussian time series. J. Econ. 157, 381–395 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Macaro, C., Prado, R.: Spectral decompositions of multiple time series: a Bayesian non-parametric approach. Psychometrika 79, 105–129 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Meier, A., Kirch, C., Edwards, M.C., Meyer, R.: beyondWhittle: Bayesian spectral inference for stationary time series. R package (2017)

  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  • Neumann, M.H., Kreiss, J.-P.: Regression-type inference in nonparametric regression. Ann. Stat. 26, 1570–1613 (1998)

    Article  MATH  Google Scholar 

  • Neumann, M.H., Polzehl, J.: Simultaneous bootstrap confidence bands in nonparametric regression. J. Nonparametr. Stat. 9, 307–333 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Perron, F., Mengersen, K.: Bayesian nonparametric modeling using mixtures of triangular distributions. Biometrics 57, 518–528 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Petrone, S.: Random Bernstein polynomials. Scand. J. Stat. 26, 373–393 (1999a)

    Article  MathSciNet  MATH  Google Scholar 

  • Petrone, S.: Bayesian density estimation using Bernstein polynomials. Can. J. Stat. 27, 105–126 (1999b)

    Article  MathSciNet  MATH  Google Scholar 

  • Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge (1981)

    Book  MATH  Google Scholar 

  • Rosen, O., Wood, S., Roy, A.: AdaptSpec: adaptive spectral density estimation for nonstationary time series. J. Am. Stat. Assoc. 107, 1575–1589 (2012)

    Article  MATH  Google Scholar 

  • Rousseau, J., Chopin, N., Liseo, B.: Bayesian nonparametric estimation of the spectral density of a long or intermediate memory Gaussian time series. Ann. Stat. 40, 964–995 (2012)

    Article  MATH  Google Scholar 

  • Röver, C.: Student-t based filter for robust signal detection. Phys. Rev. D 84, 122004 (2011)

    Article  Google Scholar 

  • Röver, C., Meyer, R., Christensen, N.: Modelling coloured residual noise in gravitational-wave signal processing. Class. Quantum Gravity 28, 015010 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Schwabe, S.H.: Sonnenbeobachtungen im jahre 1843. Astron. Nachr. 21, 233–236 (1843)

    Google Scholar 

  • Sethuraman, J.: A constructive definition of Dirichlet priors. Stat. Sin. 4, 639–650 (1994)

    MathSciNet  MATH  Google Scholar 

  • Sun, J., Loader, C.R.: Confidence bands for linear regression and smoothing. Ann. Stat. 22, 1328–1345 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Swendsen, R.H., Wang, J.S.: Replica Monte Carlo simulation of spin glasses. Phys. Rev. Lett. 57, 2607–2609 (1986)

    Article  MathSciNet  Google Scholar 

  • Thomson, D.J.: Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055–1096 (1982)

    Article  Google Scholar 

  • Tonellato, S.F.: Random field priors for spectral density functions. J. Stat. Plan. Inference 137, 3164–3176 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Vitale, S., Congedo, G., Dolesi, R., Ferroni, V., Hueller, M., Vetrugno, D., Weber, W.J., Audley, H., Danzmann, K., Diepholz, I., Hewitson, M., Korsakova, N., Ferraioli, L., Gibert, F., Karnesis, N., Nofrarias, M., Inchauspe, H., Plagnol, E., Jennrich, O., McNamara, P.W., Armano, M., Thorpe, J.I., Wass, P.: Data series subtraction with unknown and unmodeled background noise. Phys. Rev. D 90, 042003 (2014)

    Article  Google Scholar 

  • Wahba, G.: Automatic smoothing of the log periodogram. J. Am. Stat. Assoc. 75, 122–132 (1980)

    Article  MATH  Google Scholar 

  • Welch, P.D.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70–73 (1967)

    Article  Google Scholar 

  • Whittle, P.: Curve and periodogram smoothing. J. R. Stat. Soc.: Ser. B (Methodol.) 19, 38–63 (1957)

    MathSciNet  MATH  Google Scholar 

  • Zheng, Y., Zhu, J., Roy, A.: Nonparametric Bayesian inference for the spectral density function of a random field. Biometrika 97, 238–245 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Claudia Kirch, Alexander Meier, and Thomas Yee for fruitful discussions, and Michael Coughlin for providing us with the recoloured LIGO data. We also thank the New Zealand eScience Infrastructure (NeSI) for their high performance computing facilities, and the Centre for eResearch at the University of Auckland for their technical support. NC’s work is supported by National Science Foundation Grant PHY-1505373. All analysis was conducted in R, an open-source statistical software available on CRAN (cran.r-project.org). We acknowledge the following R packages: Rcpp, Rmpi, bsplinePsd, beyondWhittle, splines, signal, bspec, ggplot2, grid and gridExtra. This paper carries LIGO Document No. LIGO-P1600239.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew C. Edwards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (txt 2916 KB)

Supplementary material 2 (txt 85 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edwards, M.C., Meyer, R. & Christensen, N. Bayesian nonparametric spectral density estimation using B-spline priors. Stat Comput 29, 67–78 (2019). https://doi.org/10.1007/s11222-017-9796-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-017-9796-9

Keywords

Navigation