Skip to main content
Log in

A new algorithm to estimate monotone nonparametric link functions and a comparison with parametric approach

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

The generalized linear model (GLM) is a class of regression models where the means of the response variables and the linear predictors are joined through a link function. Standard GLM assumes the link function is fixed, and one can form more flexible GLM by either estimating the flexible link function from a parametric family of link functions or estimating it nonparametically. In this paper, we propose a new algorithm that uses P-spline for nonparametrically estimating the link function which is guaranteed to be monotone. It is equivalent to fit the generalized single index model with monotonicity constraint. We also conduct extensive simulation studies to compare our nonparametric approach for estimating link function with various parametric approaches, including traditional logit, probit and robit link functions, and two recently developed link functions, the generalized extreme value link and the symmetric power logit link. The simulation study shows that the link function estimated nonparametrically by our proposed algorithm performs well under a wide range of different true link functions and outperforms parametric approaches when they are misspecified. A real data example is used to illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In nonlinear case 1, when the true model is probit, the boundary values are \(10^{-5}\) and \(10^{11}\), since there are nonpositive definite problem in solve.QR() when the \(\lambda \) are too large.

References

  • Aranda-Ordaz, F.J.: On two families of transformations to additivity for binary response data. Biometrika 68(2), 357–363 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Bollaerts, K., Eilers, P.H., Aerts, M.: Quantile regression with monotonicity restrictions using P-splines and the L1-norm. Stat. Model. 6(3), 189–207 (2006)

    Article  MathSciNet  Google Scholar 

  • Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  • Czado, C., Santner, T.J.: The effect of link misspecification on binary regression inference. J. Stat. Plan. Inference 33(2), 213–231 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • De Boor, C.: A Practical Guide to Splines. Springer, New York (2001)

    MATH  Google Scholar 

  • Eilers, P.H., Marx, B.D.: Flexible smoothing with B-splines and penalties. Stat. Sci. 11(2), 89–121 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Eilers, P.H., Li, B., Marx, B.D.: Multivariate calibration with single-index signal regression. Chemometr. Intell. Lab. Syst. 96(2), 196–202 (2009)

    Article  Google Scholar 

  • Eilers, P.H., Marx, B.D., Durbán, M.: Twenty years of P-splines. SORT Stat. Oper. Res. Trans. 39(2), 149–186 (2015)

    MathSciNet  MATH  Google Scholar 

  • Härdle, W.K., Müller, M., Sperlich, S., Werwatz, A.: Nonparametric and Semiparametric Models. Springer, Berlin (2012)

    MATH  Google Scholar 

  • Hastie, T., Tibshirani, R.: Generalized Additive Models. CRC Press, Boca Raton (1990)

    MATH  Google Scholar 

  • He, X., Shi, P.: Monotone B-spline smoothing. J. Am. Stat. Assoc. 93(442), 643–650 (1998)

    MathSciNet  MATH  Google Scholar 

  • Ichimura, H.: Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. J. Econom. 58(1), 71–120 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, X., Dey, D.K., Prunier, R., Wilson, A.M., Holsinger, K.E.: A new class of flexible link functions with application to species co-occurrence in cape floristic region. Ann. Appl. Stat. 7(4), 2180–2204 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, S., Chen, M.H., Dey, D.K.: Flexible generalized t-link models for binary response data. Biometrika 95(1), 93–106 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Klein, R.W., Spady, R.H.: An efficient semiparametric estimator for binary response models. Econometrica 61(2), 387–421 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Leitenstorfer, F., Tutz, G.: Generalized monotonic regression based on B-splines with an application to air pollution data. Biostatistics 8(3), 654–673 (2007)

    Article  MATH  Google Scholar 

  • Liu, C.: Robit regression: a simple robust alternative to logistic and probit regression. In: Applied Bayesian Modeling and Causal Inference from Incomplete-data Perspectives, pp. 227–238. Wiley, London (2004)

  • Mallick, B.K., Gelfand, A.E.: Generalized linear models with unknown link functions. Biometrika 81(2), 237–245 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Marx, B.D., Eilers, P.H., Li, B.: Multidimensional single-index signal regression. Chemometr. Intell. Lab. Syst. 109(2), 120–130 (2011)

    Article  Google Scholar 

  • McCullagh, P., Nelder, J.A.: Generalized Linear Models. CRC Press, Boca Raton (1989)

    Book  MATH  Google Scholar 

  • Muggeo, V.M., Ferrara, G.: Fitting generalized linear models with unspecified link function: a P-spline approach. Comput. Stat. Data Anal. 52(5), 2529–2537 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Pregibon, D.: Goodness of link tests for generalized linear models. J. R. Stat. Soc. Ser. C (Appl. Stat.) 29(1), 15–23 (1980)

    MATH  Google Scholar 

  • Ramsay, J.: Estimating smooth monotone functions. J. R. Stat. Soc. Ser. B Stat. Methodol. 60(2), 365–375 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Ramsay, J.O.: Monotone regression splines in action. Stat. Sci. 3(4), 425–441 (1988)

    Article  Google Scholar 

  • Roy, V.: Efficient estimation of the link function parameter in a robust Bayesian binary regression model. Comput. Stat. Data Anal. 73, 87–102 (2014)

    Article  MathSciNet  Google Scholar 

  • Wang, L., Yang, L.: Spline estimation of single-index models. Stat. Sin. 19(2), 765–783 (2009)

    MathSciNet  MATH  Google Scholar 

  • Wang, W., Small, D.S.: Monotone B-spline smoothing for a generalized linear model response. Am. Stat. 69(1), 28–33 (2015)

    Article  MathSciNet  Google Scholar 

  • Wang, X., Dey, D.K.: Generalized extreme value regression for binary response data: an application to B2B electronic payments system adoption. Ann. Appl. Stat. 4(4), 2000–2023 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Z.: An algorithm for generalized monotonic smoothing. J. Appl. Stat. 27(4), 495–507 (2000)

    Article  MATH  Google Scholar 

  • Weisberg, S., Welsh, A.: Adapting for the missing link. Ann. Stat. 22(4), 1674–1700 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Wood, S.: Generalized Additive Models: An Introduction with R. CRC Press, Boca Raton (2006)

    MATH  Google Scholar 

  • Wood, S.N.: Fast stable direct fitting and smoothness selection for generalized additive models. J. R. Stat. Soc. Ser. B Stat. Methodol. 70(3), 495–518 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Ypma, J.: Introduction to nloptr: an R interface to NLopt. Tech. rep. (2014)

  • Yuan, Y.: Prediction Performance of Survival Models. University of Waterloo, Waterloo (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 44 KB)

Supplementary material 2 (R 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Roy, V. & Zhu, Z. A new algorithm to estimate monotone nonparametric link functions and a comparison with parametric approach. Stat Comput 28, 1083–1094 (2018). https://doi.org/10.1007/s11222-017-9781-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-017-9781-3

Keywords

Navigation