Skip to main content
Log in

Bayesian quantile regression for partially linear additive models

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

In this article, we develop a semiparametric Bayesian estimation and model selection approach for partially linear additive models in conditional quantile regression. The asymmetric Laplace distribution provides a mechanism for Bayesian inferences of quantile regression models based on the check loss. The advantage of this new method is that nonlinear, linear and zero function components can be separated automatically and simultaneously during model fitting without the need of pre-specification or parameter tuning. This is achieved by spike-and-slab priors using two sets of indicator variables. For posterior inferences, we design an effective partially collapsed Gibbs sampler. Simulation studies are used to illustrate our algorithm. The proposed approach is further illustrated by applications to two real data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrevaya, J.: The effects of demographics and maternal behavior on the distribution of birth outcomes. Empiric. Econ. 26(1), 247–257 (2001)

    Article  Google Scholar 

  • Barbieri, M.M., Berger, J.O.: Optimal predictive model selection. Ann. Stat. 32(3), 870–897 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Barndorff-Nielsen, O., Shephard, N.: Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. R Stat. Soc. Ser. B 63(2), 167–241 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Bontemps, C., Simioni, M., Surry, Y.: Semiparametric hedonic price models: assessing the effects of agricultural nonpoint source pollution. J. Appl. Econom. 23(6), 825–842 (2008)

    Article  MathSciNet  Google Scholar 

  • Buchinsky, M.: Changes in the US wage structure 1963–1987: application of quantile regression. Econometrica 62(2), 405–458 (1994)

    Article  MATH  Google Scholar 

  • Cade, B.S., Noon, B.R.: A gentle introduction to quantile regression for ecologists. Frontiers Ecol. Environ. 1(8), 412–420 (2003)

    Article  Google Scholar 

  • Chib, S., Jeliazkov, I.: Inference in semiparametric dynamic models for binary longitudinal data. J. Am. Stat. Assoc. 101(474), 685–700 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Cripps, E., Carter, C., Kohn, R.: Variable selection and covariance selection in multivariate regression models. Handb. Stat. 25(2), 519–552 (2005)

    Article  MathSciNet  Google Scholar 

  • De Gooijer, J., Zerom, D.: On additive conditional quantiles with high-dimensional covariates. J. Am. Stat. Assoc. 98(461), 135–146 (2003)

    Article  MATH  Google Scholar 

  • George, E., McCulloch, R.: Variable selection via Gibbs sampling. J. Am. Stat. Assoc. 88(423), 881–889 (1993)

    Article  Google Scholar 

  • Goldstein, M., Smith, A.: Ridge-type estimators for regression analysis. J R Stat. Soc. Ser B 36(2), 284–291 (1974)

    MATH  MathSciNet  Google Scholar 

  • He, X.: Quantile curves without crossing. Am. Stat. 51(2), 186–192 (1997)

    Google Scholar 

  • Horowitz, J., Lee, S.: Nonparametric estimation of an additive quantile regression model. J. Am. Stat. Assoc. 100(472), 1238–1249 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Hu, Y., Gramacy, R., Lian, H.: Bayesian quantile regression for single-index models. Stat. Comput. 23, 437–454 (2013)

    Article  MathSciNet  Google Scholar 

  • Huang, J., Horowitz, J., Wei, F.: Variable selection in nonparametric additive models. Ann. Stat. 38(4), 2282–2312 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Koenker, R., Bassett, G.: Regression quantiles. Econometrica 46(1), 33–50 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  • Kohn, R., Smith, M., Chan, D.: Nonparametric regression using linear combinations of basis functions. Stat. Comput. 11(4), 313–322 (2001)

    Article  MathSciNet  Google Scholar 

  • Kozumi, H., Kobayashi, G.: Gibbs sampling methods for Bayesian quantile regression. J. Stat. Comput. Simul. 81(11), 1565–1578 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Li, Q., Xi, R., Lin, N.: Bayesian regularized quantile regression. Bayesian Anal. 5(3), 533–556 (2010)

    Article  MathSciNet  Google Scholar 

  • Lian, H.: Identification of partially linear structure in additive models with an application to gene expression prediction from sequences. J. Bus. Econ. Stat. 30, 337–350 (2012)

    Article  Google Scholar 

  • Liang, H., Thurston, S.W., Ruppert, D., Apanasovich, T., Hauser, R.: Additive partial linear models with measurement errors. Biometrika 95(3), 667–678 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Meier, L., Van De Geer, S., Bühlmann, P.: High-dimensional additive modeling. Ann. Stat. 37(6B), 3779–3821 (2009)

    Article  MATH  Google Scholar 

  • Müller, P., Parmigiani, G., Rice, K.: FDR and Bayesian multiple comparisons rules. In: Proceedings of Valencia / ISBA 8th World Meeting on Bayesian Statistics (2006)

  • Panagiotelis, A., Smith, M.: Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models. J. Econom. 143(2), 291–316 (2008)

    Article  MathSciNet  Google Scholar 

  • Ravikumar, P., Lafferty, J., Liu, H., Wasserman, L.: Sparse additive models. J. R Stat. Soc. Ser. B 71(5), 1009–1030 (2009)

    Article  MathSciNet  Google Scholar 

  • Reich, B.J., Fuentes, M., Dunson, D.B.: Bayesian spatial quantile regression. J. Am. Stat. Assoc 106(493), 6–20 (2011)

    Article  MathSciNet  Google Scholar 

  • Scheipl, F., Fahrmeira, L., Kneib, T.: Spike-and-slab priors for function selection in structured additive regression models. J. Am. Stat. Assoc. 107(500), 1518–1532 (2012)

    Google Scholar 

  • Shively, T., Kohn, R., Wood, S.: Variable selection and function estimation in additive nonparametric regression using a data-based prior. J. Am. Stat. Assoc. 94(447), 777–794 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Smith, M., Kohn, R.: Nonparametric regression using Bayesian variable selection. J. Econom. 75(2), 317–343 (1996)

    Google Scholar 

  • Sriram, K., Ramamoorthi, R., Ghosh, P.: Posterior consistency of Bayesian quantile regression based on the misspecified asymmetric Laplace density. Bayesian Anal. 8(2), 1–26 (2013)

    Google Scholar 

  • Tan, C.: No one true path: uncovering the interplay between geography, institutions, and fractionalization in economic development. J. Appl. Econom. 25(7), 1100–1127 (2010)

    Article  Google Scholar 

  • Tokdar, S., Kadane, J.: Simultaneous linear quantile regression: a semiparametric Bayesian approach. Bayesian Anal. 6(4), 1–22 (2011)

    MathSciNet  Google Scholar 

  • van Dyk, D., Park, T.: Partially collapsed Gibbs samplers. J. Am. Stat. Assoc. 103(482), 790–796 (2008)

    Article  MATH  Google Scholar 

  • Yau, P., Kohn, R., Wood, S.: Bayesian variable selection and model averaging in high-dimensional multinomial nonparametric regression. J. Comput. Graph. Stat. 12(1), 23–54 (2003)

    Article  MathSciNet  Google Scholar 

  • Yoshida, T.: Asymptotics for penalized spline estimators in quantile regression. Commun. Stat. Theory Methods 43, 377 (2014)

    Article  Google Scholar 

  • Yu, K., Lu, Z.: Local linear additive quantile regression. Scand. J. Stat. 31(3), 333–346 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Yu, K., Moyeed, R.A.: Bayesian quantile regression. Stat. Probab. Lett. 54(4), 437–447 (2011)

    Article  MathSciNet  Google Scholar 

  • Yue, Y., Rue, H.: Bayesian inference for additive mixed quantile regression models. Comput. Stat. Data Anal. 55(1), 84–96 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, H., Cheng, G., Liu, Y.: Linear or nonlinear? Automatic structure discovery for partially linear models. J. Am. Stat. Assoc. 106(495), 1099–1112 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors want to thank the AE and three anonymous reviewers for their insightful comments and suggestions that lead to significant improvements on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Lian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2122 KB)

Appendix: MCMC algorithm details

Appendix: MCMC algorithm details

The joint distribution of all the variables is

$$\begin{aligned}&p(\varvec{\alpha }, \{\varvec{\beta }_j\}, \varvec{E},\mu ,\delta _{0}| \varvec{y}, \varvec{x})\\&\propto \exp \left\{ -\frac{1}{2}\left( \varvec{y}-\mu \varvec{1}_n-\varvec{B}_{0}\varvec{\alpha }-\sum \limits _{j=1}^{p}\varvec{B}_{j} \varvec{\beta }_{j}-k_{1}\varvec{e}\right) ^{T}\varvec{E}^{-1}\right. \\&\left. \left( \varvec{y}-\mu \varvec{1}_n-\varvec{B}_{0}\varvec{\alpha }-\sum \limits _{j=1}^{p}\varvec{B}_{j} \varvec{\beta }_{j}-k_{1}\varvec{e}\right) \right\} \times \det [\varvec{E}]^{-1/2}\\&\quad \times p(\varvec{\alpha })\times \prod \limits _{j=1}^{p}p(\varvec{\beta }_j)\times p(\delta _{0})\times \prod \limits _{i=1}^{n}p(e_i)\times p(\mu ), \end{aligned}$$

where \(p(\varvec{\beta }_j)\), \(p(\varvec{\alpha })\), \(p(e_i)\), \(p(\delta _{0})\) and \(p(\mu )\) are the prior distributions of \(\varvec{\beta }_j\), \(\varvec{\alpha }\), \(e_i\), \(\delta _{0}\), and \(\mu \) respectively.

We use the Metropolis-within-Gibbs algorithm to sample from the posterior distribution. We integrate out \(\alpha _j\) in step 3 and \(\varvec{\beta }_j\) in step 5 to improve mixing of the Markov Chain. The posterior distribution of each variable is as follows (\(\sim \) denotes all variables except the one to be sampled):

  1. 1.

    Sample \(p(\alpha _j|\sim )=p \Big (\alpha _j|\varvec{y}^{*},\varvec{e}, \delta _{0}, \sigma _j^{2},\gamma ^{(\alpha )}_j \Big ),~ j=1, \ldots , p\), from the conditional distribution of \(\alpha _j\),

    $$\begin{aligned} \begin{aligned} p\Big (\alpha _j|\varvec{y}^{*},\varvec{e},\delta _{0}, \sigma _j^{2},\gamma ^{(\alpha )}_j=1\Big )&\sim N (\mu _j, \xi _j^{2}),\\ p\Big (\alpha _j|\varvec{y}^{*},\varvec{e},\delta _{0}, \sigma _j^{2},\gamma ^{(\alpha )}_j=0 \Big )&=0, \end{aligned} \end{aligned}$$

    where \(\varvec{y}^{*}=\varvec{y}-\mu \varvec{1}_n-\sum \limits _{i\ne j}^{p} \alpha _i\varvec{B}_{i0}-\sum \limits _{i=1 }^{p} \varvec{B}_{i} \varvec{\beta }_{i}-k_{1}\varvec{e}\), \(\xi ^{2}_j =\Big (\varvec{B}^{T}_{j0}\varvec{E}^{-1}\varvec{B}_{j0}+\frac{1}{\sigma _j^{2}}\Big )^{-1}\) and \(\mu _j=\xi ^{2}_j \varvec{B}^{T}_{j0} \varvec{E}^{-1}\varvec{y}^{*}\).

  2. 2.

    Sample \(p(\mu |\sim )=p (\mu |\varvec{y}^{*},\varvec{e},\delta _{0})\), from the conditional distribution of \(\mu \),

    $$\begin{aligned} \begin{aligned} p(\mu |\varvec{y}^{*},\varvec{e}, \delta _{0})&\sim N (\mu _0, \xi _0^{2}), \end{aligned} \end{aligned}$$

    where \(\xi ^{2}_0=k_2\delta _{0}(\sum \nolimits _{i=1}^{n}e_i^{-1})^{-1}\), \(\mu _0=\xi ^{2}_0\varvec{1}^{T}_{n} \varvec{E}^{-1}\varvec{y}^{*}\), and \(\varvec{y}^{*}=\varvec{y}-\sum \nolimits _{i=1}^{p} \alpha _i\varvec{B}_{i0}-\sum \nolimits _{i=1 }^{p} \varvec{B}_{i} \varvec{\beta }_{i}-k_1\varvec{e}\).

  3. 3.

    Sample \(p(\gamma ^{(\alpha )}_j|\sim )=p(\gamma ^{(\alpha )}_j|\varvec{y}^{*}, \varvec{e},\delta _{0}, \sigma _j^{2}), ~j=1, \ldots , p\), from its conditional posterior after integrating over \(\alpha _j\), \(p(\gamma ^{(\alpha )}_j=1|\varvec{y}^{*}, \varvec{e},\delta _{0}, \sigma _j^{2})=\frac{1}{1+h}\), with

    $$\begin{aligned} \begin{aligned} h~=&~h_1\frac{p\Big (\gamma _j^{(\alpha )}=0|\gamma ^{(\alpha )}_{i\ne j}\Big )}{p\Big (\gamma _j^{(\alpha )}=1|\gamma ^{(\alpha )}_{i\ne j}\Big )},\\ h_1=&~\exp \Big \{-\frac{1}{2}(\varvec{B}^{T}_{j0}\varvec{E}^{-1} \varvec{y}^{*})^{2}\Big (\varvec{B}^{T}_{j0}\varvec{E}^{-1} \varvec{B}_{j0}\!+\!\frac{1}{\sigma ^2_j}\Big )^{-1}\Big \}\\&\times (\sigma _j^{2}\varvec{B}^{T}_{j0}\varvec{E}^{-1} \varvec{B}_{j0}+1)^{\frac{1}{2}},\\ \end{aligned} \end{aligned}$$

    where \(p(\gamma ^{(\alpha )}_j=0|\gamma ^{(\alpha )}_{i\ne j})=(p-q_{\gamma ^{(\alpha )}_{0}})/(p+1)\) and \(p(\gamma ^{(\alpha )}_j=1|\gamma ^{(\alpha )}_{i\ne j})=(1+q_{\gamma ^{(\alpha )}_{0}})/(p+1)\) with \(\gamma ^{(\alpha )}_{0}=(\gamma ^{(\alpha )}_1,\ldots ,\gamma ^{(\alpha )}_{j-1},0,\gamma ^{(\alpha )}_{j+1},\ldots ,\gamma ^{(\alpha )}_{p})^{T}\), and \(\varvec{y}^{*}=\varvec{y}-\mu \varvec{1}_n-\sum \nolimits _{i\ne j}^{p} \alpha _i\varvec{B}_{i0}-\sum \nolimits _{i=1 }^{p} \varvec{B}_{i} \varvec{\beta }_{i}-k_{1}\varvec{e} \).

  4. 4.

    Sample \(p(\varvec{\beta }_j|\sim )=p(\varvec{\beta }_j|\varvec{y}^{*}, \varvec{e}, \delta _{0}, \tau ^{2}_j, \gamma ^{(\varvec{\beta })}_j), ~j=1, \ldots , p\),

    $$\begin{aligned} \begin{aligned} p\Big (\varvec{\beta }_j|\varvec{y}^{*},\varvec{e},\delta _{0}, \tau _j^{2},\gamma ^{(\varvec{\beta })}_j=1\Big )&\sim N (\varvec{\mu }_j, \varvec{\Sigma }_j),\\ p\Big (\varvec{\beta }_j|\varvec{y}^{*},\varvec{e},\delta _{0}, \tau _j^{2},\gamma ^{(\varvec{\beta })}_j=0\Big )&=0, \end{aligned} \end{aligned}$$

    where \(\varvec{y}^{*}=\varvec{y}-\mu \varvec{1}_n-\sum \nolimits _{i=1 }^{p} \alpha _i \varvec{B}_{i0}-\sum \nolimits _{i\ne j }^{p} \varvec{B}_{i} \varvec{\beta }_{i}-k_1\varvec{e}\), \(\varvec{\mu }_j=\varvec{\Sigma }_j \varvec{B}^{T}_j \varvec{E}^{-1}\varvec{y}^{*}\), \(\varvec{\Sigma }_j=(\varvec{B}^{T}_j \varvec{E}^{-1} \varvec{B}_j+\frac{1}{\tau ^{2}_j}\varvec{\Omega }_j)^{-1}\).

  5. 5.

    Sample \(p(\gamma ^{(\varvec{\beta })}_j|\sim )=p(\gamma ^{(\varvec{\beta })}_j|\varvec{y}^{*},\varvec{e},\delta _{0}, \tau _j^{2}),~ j=1, \ldots , p\), from its conditional posterior after integrating over \(\varvec{\beta }_j\), \(p(\gamma ^{(\varvec{\beta })}_j=1|\varvec{y}^{*},\varvec{e},\delta _{0}, \tau _j^{2})=\frac{1}{1+h}\), with

    $$\begin{aligned} h&= h_{1}\frac{p\Big (\gamma _j^{(\varvec{\beta })}=0|~\gamma ^{(\varvec{\beta })}_{i\ne j}\Big )}{p\Big (\gamma _j^{(\varvec{\beta })}=1|~\gamma ^{(\varvec{\beta })}_{i\ne j}\Big )},\\ h_1&= \exp \Big \{-\frac{1}{2}\Big [\varvec{y}^{*T}\varvec{E}^{-1}\varvec{B}_j\Big (\varvec{B}_j^{T}\varvec{E}^{-1}\varvec{B}_j\\&+\frac{1}{\tau _j^{2}}\varvec{\Omega }_j\Big )^{-1}\varvec{B}_j^T \varvec{E}^{-1}\varvec{y}^{*}\Big ]\Big \}\\&\times \det \Big [\frac{1}{\tau ^{2}_{j}}\varvec{\Omega }_j\Big ]^{-\frac{1}{2}}\times \det \Big [\varvec{B}_j^T\varvec{E}^{-1} \varvec{B}_j+\frac{1}{\tau _j^{2}}\varvec{\Omega }_j\Big ]^{\frac{1}{2}}, \end{aligned}$$

    where \(\varvec{y}^{*}=\varvec{y}-\mu \varvec{1}_n-\sum \nolimits _{i=1 }^{p} \alpha _i \varvec{B}_{i0}-\sum \nolimits _{i\ne j }^{p} \varvec{B}_{i} \varvec{\beta }_{i}-k_1\varvec{e}\), \(p(\gamma ^{(\varvec{\beta })}_j=0|\gamma ^{(\varvec{\beta })}_{i\ne j})=(p-q_{\gamma ^{(\varvec{\beta })}_{0}})/(p+1)\) and \(p(\gamma ^{(\varvec{\beta })}_j=1|\gamma ^{(\varvec{\beta })}_{i\ne j})=(1+q_{\gamma ^{(\varvec{\beta })}_{0}})/(p+1)\) with \(\gamma ^{(\varvec{\beta })}_{0}=(\gamma ^{(\varvec{\beta })}_1,\ldots ,\gamma ^{(\varvec{\beta })}_{j-1},0,\gamma ^{(\varvec{\beta })}_{j+1},\ldots ,\gamma ^{(\varvec{\beta })}_{p})^{T}\).

  6. 6.

    Sample \(\delta _0\),

    $$\begin{aligned} \begin{aligned} \delta _{0}&\sim IG (a_1+3n/2, \nu ),\\ \nu&=a_2+\left( (2k_2e_i)^{-1}\sum \limits _{i=1}^{n}\left( y_{i}-\sum \limits _{j=1}^{p}\alpha _{j} B_{j0}(x_{ij})\right. \right. \\&\quad \left. \left. -\sum \limits _{j=1}^{p}\sum \limits _{k=1}^{K}\beta _{jk}B_{jk}(x_{ij})-k_{1}e_{i}\right) ^{2}+e_{i}\right) .\\ \end{aligned} \end{aligned}$$
  7. 7.

    Sample \(\sigma ^{2}_j,~ j=1,\ldots ,p\), and \(\tau ^{2}_j, ~j=1,\ldots ,p\), from their conditional posterior distributions if \(\gamma ^{(\alpha )}_j\), \(\gamma ^{(\varvec{\beta })}_{j}\ne 0\),

    $$\begin{aligned} \begin{aligned} \sigma ^{2}_j&\sim IG (a_1+1/2, a_2+(\alpha _j^{2}/2)),\\ \tau ^2_j&\sim IG(a_1+K /2, a_2+(\varvec{\beta }_j^{T} \varvec{\Omega }_j\varvec{\beta }_j/2)).\\ \end{aligned} \end{aligned}$$

    Otherwise they are generated from their priors.

  8. 8.

    The full conditional distribution of \(e_{i}, ~i=1,\ldots , n\) is a generalized inverse Gaussian distribution \((\textit{GIG})\),

    $$\begin{aligned}&p(e_{i}|\delta _0,\nu _i)\\&\quad \sim \textit{GIG}\left( \frac{1}{2}, \sqrt{\frac{(y_{i}-\nu _i)^{2}}{k_{2}\delta _0}},\sqrt{\frac{k_{1}^{2}}{k_{2}\delta _0}+\frac{2}{\delta _0}}\right) ,\\&\nu _i=y_{i}-\mu -\sum \limits _{j=1}^{p}\alpha _{j} B_{j0}(x_{ij})-\sum \limits _{j=1}^{p}\sum \limits _{k=1}^{K}\beta _{jk}B_{jk}(x_{ij}), \end{aligned}$$

    where the probability density function of \(\textit{GIG}(\rho ,m,n)\) is

    $$\begin{aligned}&f(x|\rho ,m,n)\\&\quad =\frac{(n/m)^{\rho }}{2K_{\rho }(mn)}x^{\rho -1}\exp \Big \{-\frac{1}{2}(m^{2}x^{-1}+n^{2}x)\Big \},\\&\qquad x>0,\; -\infty <\rho <\infty ,\; m\ge 0,\; n\ge 0, \end{aligned}$$

    and \(K_{\rho }\) is the modified Bessel function of the third kind (Barndorff-Nielsen and Shephard 2001).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Zhao, K. & Lian, H. Bayesian quantile regression for partially linear additive models. Stat Comput 25, 651–668 (2015). https://doi.org/10.1007/s11222-013-9446-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-013-9446-9

Keywords

Navigation