Skip to main content
Log in

Efficient likelihood-free Bayesian Computation for household epidemics

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Considerable progress has been made in applying Markov chain Monte Carlo (MCMC) methods to the analysis of epidemic data. However, this likelihood based method can be inefficient due to the limited data available concerning an epidemic outbreak. This paper considers an alternative approach to studying epidemic data using Approximate Bayesian Computation (ABC) methodology. ABC is a simulation-based technique for obtaining an approximate sample from the posterior distribution of the parameters of the model and in an epidemic context is very easy to implement. A new approach to ABC is introduced which generates a set of values from the (approximate) posterior distribution of the parameters during each simulation rather than a single value. This is based upon coupling simulations with different sets of parameters and we call the resulting algorithm coupled ABC. The new methodology is used to analyse final size data for epidemics amongst communities partitioned into households. It is shown that for the epidemic data sets coupled ABC is more efficient than ABC and MCMC-ABC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addy, C.L., Longini, I.M., Haber, M.: A generalized stochastic model for the analysis of infectious disease final size data. Biometrics 47, 961–974 (1991)

    Article  MATH  Google Scholar 

  • Baguelin, M., Newton, J.R., Demiris, N., Daly, J., Mumford, J.A., Wood, J.L.N.: Control of equine influenza: scenario testing using a realistic metapopulation model of spread. J. R. Soc. Interface 7, 67–79 (2010)

    Article  Google Scholar 

  • Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases and Its Applications, 2nd edn. Griffin, London (1975)

    MATH  Google Scholar 

  • Ball, F.G., Lyne, O.D.: Optimal vaccination policies for stochastic epidemics among a population of households. Math. Biosci. 177–178, 333–354 (2002)

    Article  MathSciNet  Google Scholar 

  • Ball, F.G., Mollison, D., Scalia-Tomba, G.: Epidemics with two levels of mixing. Ann. Appl. Probab. 7, 46–89 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Beaumont, M., Zhang, W., Balding, D.: Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035 (2002)

    Google Scholar 

  • Bortot, P., Coles, S.G., Sisson, S.A.: Inference for stereological extremes. J. Am. Stat. Assoc. 102, 84–92 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Clancy, D., O’Neill, P.: Exact Bayesian inference and model selection for stochastic models of epidemics among a community of households. Scand. J. Stat. 34, 259–274 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Demiris, N., O’Neill, P.D.: Bayesian inference for stochastic epidemic models with two levels of mixing. Scand. J. Stat. 32, 265–280 (2005a)

    Article  MathSciNet  MATH  Google Scholar 

  • Demiris, N., O’Neill, P.: Bayesian inference for stochastic multitype epidemics in structured populations via random graphs. J. R. Stat. Soc. B 67, 731–745 (2005b)

    Article  MathSciNet  MATH  Google Scholar 

  • Demiris, N., O’Neill, P.: Computation of final outcome probabilities for the generalised stochastic epidemic. Stat. Comput. 16, 309–317 (2006)

    Article  MathSciNet  Google Scholar 

  • Fox, J.P., Hall, C.E.: Viruses in Families. PSG Publishing, Littleton (1980)

    Google Scholar 

  • Gibson, G.: Markov chain Monte Carlo methods for fitting spatio-temporal stochastic models in plant epidemiology. J. R. Stat. Soc. C 46, 215–233 (1997)

    Article  MATH  Google Scholar 

  • Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  • Grelaud, A., Robert, C.P., Marin, J.-M.: ABC methods for model choice in Gibbs random fields. C. R. Acad. Sci. Paris, Ser. I 347, 205–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Longini, I.M., Koopman, J.S., Monto, A.S., Fox, J.P.: Estimating household and community transmission parameters for influenza. Am. J. Epidemiol. 115, 736–751 (1982)

    Google Scholar 

  • Ludwig, D.: Final size distributions for epidemics. Math. Biosci. 23, 33–46 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Marjoram, P., Molitor, J., Plagnol, V., Tavaré, S.: Markov chain Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. USA 100, 15324–15328 (2003)

    Article  Google Scholar 

  • Monto, A.S., Koopman, J.S., Longini, I.M.: Tecumseh study of illness. XIII. Influenza infection and disease, 1976–1981. Am. J. Epidemiol. 121, 811–822 (1985)

    Google Scholar 

  • Neal, P., Roberts, G.: Statistical inference and model selection for Hagelloch data set. Biostatistics 5, 249–261 (2004)

    Article  MATH  Google Scholar 

  • Neal, P., Roberts, G.: A case study in non-centering for data augmentation: Stochastic epidemics. Stat. Comput. 15, 315–327 (2005)

    Article  MathSciNet  Google Scholar 

  • O’Neill, P.: Bayesian inference for stochastic multitype epidemics in structured populations using sample data. Biostatistics 10, 779–791 (2009)

    Article  Google Scholar 

  • O’Neill, P.D., Roberts, G.O.: Bayesian inference for partially observed stochastic epidemics. J. R. Stat. Soc. A 162, 121–129 (1999)

    Article  Google Scholar 

  • O’Neill, P.D., Balding, D.J., Becker, N.G., Eerola, M., Mollison, D.: Analyses of infectious disease data from household outbreaks by Markov chain Monte Carlo methods. J. R. Stat. Soc. C 49, 517–542 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Papaspoliopoulos, O., Roberts, G.O., Sköld, M.: Non-centered parameterisations for hierarchical models and data augmentation. In: Bernardo, J.M., Bayarri, M.J., Berger, J.O., Dawid, A.P., Heckerman, D., Smith, A.F.M., West, M. (eds.) Bayesian Statistics 7, pp. 307–326. Oxford University Press, London (2003)

    Google Scholar 

  • Ratmann, O., Jørgensen, O., Hinkley, T., Stumpf, M., Richardson, S., Wiuf, C.: Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum. PLoS Comput. Biol. 3, e320 (2007)

    Article  Google Scholar 

  • Roberts, G.O., Gelman, A., Gilks, W.R.: Weak convergence and optimal scaling of Random walk Metropolis algorithms. Ann. Appl. Probab. 7, 110–120 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Sellke, T.: On the asymptotic distribution of the size of a stochastic epidemic. J. Appl. Probab. 20, 390–394 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Sisson, S.A., Fan, Y., Tanaka, M.M.: Sequential Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. USA 104, 1760–1765 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Tallmon, D.A., Luikart, G., Beaumont, M.A.: Comparative Evaluation of a New Effective Population Size Estimator Based on Approximate Bayesian Computation. Genetics 167, 977–988 (2004)

    Article  Google Scholar 

  • Tavaré, S., Balding, D.J., Griffiths, R.C., Donnelly, P.: Inferring coalescence times from DNA sequence data. Genetics 145, 505–518 (1997)

    Google Scholar 

  • Toni, T., Stumpf, M.P.H.: Simulation-based model selection for dynamical systems and population biology. Bioinformatics 26, 104–110 (2010)

    Article  Google Scholar 

  • White, S.: Stochastic epidemics conditioned on their final outcome. PhD Thesis, University of Nottingham (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Neal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neal, P. Efficient likelihood-free Bayesian Computation for household epidemics. Stat Comput 22, 1239–1256 (2012). https://doi.org/10.1007/s11222-010-9216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-010-9216-x

Keywords

Navigation