Skip to main content
Log in

A ‘nondecimated’ lifting transform

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Classical nondecimated wavelet transforms are attractive for many applications. When the data comes from complex or irregular designs, the use of second generation wavelets in nonparametric regression has proved superior to that of classical wavelets. However, the construction of a nondecimated second generation wavelet transform is not obvious. In this paper we propose a new ‘nondecimated’ lifting transform, based on the lifting algorithm which removes one coefficient at a time, and explore its behavior. Our approach also allows for embedding adaptivity in the transform, i.e. wavelet functions can be constructed such that their smoothness adjusts to the local properties of the signal. We address the problem of nonparametric regression and propose an (averaged) estimator obtained by using our nondecimated lifting technique teamed with empirical Bayes shrinkage. Simulations show that our proposed method has higher performance than competing techniques able to work on irregular data. Our construction also opens avenues for generating a ‘best’ representation, which we shall explore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovich, F., Bailey, T., Sapatinas, T.: Wavelet analysis and its statistical applications. J. Roy. Stat. Soc. D 49, 1–29 (2000)

    Article  Google Scholar 

  • Ballester, P.J., Carter, J.N.: Real-parameter genetic algorithms for finding multiple optimal solutions in multi-modal optimization. In: Lecture Notes in Computer Science, vol. 2723, pp. 706–717. Springer, Berlin (2003)

    Google Scholar 

  • Barber, S., Nason, G.P.: Real nonparametric regression using complex wavelets. J. R. Stat. Soc. B 66, 927–939 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Chiann, C., Morettin, P.A.: A wavelet analysis for time series. J. Nonparametr. Stat. 10, 1–46 (1999)

    Article  MathSciNet  Google Scholar 

  • Claypoole, R.L., Baraniuk, R.G., Nowak, R.D.: Adaptive wavelet transforms via lifting. In: Transactions of the International Conference on Acoustics, Speech and Signal Processing. IEEE Trans. Image Process. 12, 1513–1516 (1998)

  • Claypoole, R.L., Davis, G.M., Sweldens, W., Baraniuk, R.G.: Nonlinear wavelet transforms for image coding via lifting. IEEE Trans. Image Process. 12, 1449–1459 (2003)

    Article  MathSciNet  Google Scholar 

  • Coifman, R.R., Donoho, D.L.: Translation-invariant de-noising. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics. Lecture Notes in Statistics, vol. 103, pp. 125–150. Springer, Berlin (1995)

    Google Scholar 

  • Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  • Deb, K., Agrawal, S.: Understanding interactions among genetic algorithm parameters. In: Banzhaf, W., Reeves, C.R. (eds.) Foundations of Genetic Algorithms, vol. 5, pp. 265–286 (1999)

  • Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Soc. 90, 1200–1224 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Holschneider, M., Kronland-Martinet, R., Morlet, J., Tchamitchian, P.: A real-time algorithm for signal analysis with the help of the wavelet transform. In: Combers, J.M., Grossmann, A., Tchamitchian, P. (eds.) Wavelets: Time-Frequency Methods and Phase Space, pp. 286–297 (1989)

  • Jansen, M., Nason, G.P., Silverman, B.W.: Scattered data smoothing by empirical Bayesian shrinkage of second generation wavelet coefficients. In: Unser, M., Aldroubi, A. (eds.) Wavelet applications in signal and image processing. Proceedings of SPIE, vol. 4478, pp. 87–97 (2001)

  • Jansen, M., Nason, G.P., Silverman, B.W.: Multivariate nonparametric regression using lifting. Technical Report 04:17, Statistics Group, Department of Mathematics, University of Bristol, UK (2004)

  • Johnstone, I.M., Silverman, B.W.: Needles and hay in haystacks: empirical Bayes estimates of possibly sparse sequences. Ann. Stat. 32, 1594–1649 (2004a)

    Article  MATH  MathSciNet  Google Scholar 

  • Johnstone, I.M., Silverman, B.W.: EbayesThresh: R programs for empirical Bayes thresholding. J. Stat. Softw. 12, 1–38 (2004b)

    Google Scholar 

  • Johnstone, I.M., Silverman, B.W.: Empirical Bayes selection of wavelet thresholds. Ann. Stat. 33, 1700–1752 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Lee, C.S., Lee, C.K., Yoo, K.Y.: New lifting based structure for undecimated wavelet transform. Electron. Lett. 36, 1894–1895 (2000)

    Article  Google Scholar 

  • Lucasius, C.B., Kateman, G.: Understanding and using genetic algorithms, part 1: concepts, properties and context. Chemom. Intell. Lab. Syst. 19, 1–33 (1993)

    Article  Google Scholar 

  • Lucasius, C.B., Kateman, G.: Understanding and using genetic algorithms, part 2: representation, configuration and hybridization. Chemom. Intell. Lab. Syst. 25, 99–145 (1994)

    Article  Google Scholar 

  • Nason, G.P., Silverman, B.W.: The discrete wavelet transform in S. J. Comput. Graph. Stat. 3, 163–191 (1994)

    Article  Google Scholar 

  • Nason, G.P., Silverman, B.W.: The Stationary wavelet transform and some statistical applications. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics. Lecture Notes in Statistics, vol. 103, pp. 281–300. Springer, Berlin (1995)

    Google Scholar 

  • Nason, G.P., von Sachs, R., Kroisandt, G.: Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum. J. R. Stat. Soc. B 62, 271–292 (2000)

    Article  Google Scholar 

  • Nunes, M.A., Knight, M.I., Nason, G.P.: Adaptive lifting in nonparametric regression. Stat. Comput. 16, 143–159 (2006)

    Article  MathSciNet  Google Scholar 

  • Nunes, M.A., Nason, G.P.: Stopping time in adaptive lifting. Technical Report 05:15, Statistics Group, Department of Mathematics, University of Bristol, UK (2005)

  • Percival, D.B.: On estimation of the wavelet variance. Biometrika 82, 619–631 (1996)

    Article  MathSciNet  Google Scholar 

  • Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  • Pesquet, J.C., Krim, H., Carfantan, H.: Time invariant orhtonormal wavelet representations. IEEE Trans. Signal Process. 44, 1964–1970 (1996)

    Article  Google Scholar 

  • Piella, G., Heijmans, H.J.A.M.: Adaptive lifting schemes with perfect reconstruction. IEEE Trans. Signal Process. 50, 1620–1630 (2002)

    Article  Google Scholar 

  • Sweldens, W.: Wavelets and the lifting scheme: a 5 minute tour. Z. Angew. Math. Mech. 76, 41–44 (1996)

    MATH  Google Scholar 

  • Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29, 511–546 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Trappe, W., Liu, K.J.R.: Denoising via adaptive lifting schemes. In: Aldroubi, A., Laine, M.A., Unser, M.A. (eds.) Wavelet Applications in Signal and Image Processing VIII. Proceedings of SPIE, vol. 4119, pp. 302–312 (2000)

  • Vidakovic, B.: Statistical Modeling by Wavelets. Wiley, New York (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina I. Knight.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knight, M.I., Nason, G.P. A ‘nondecimated’ lifting transform. Stat Comput 19, 1–16 (2009). https://doi.org/10.1007/s11222-008-9062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-008-9062-2

Keywords

Navigation