Skip to main content
Log in

Modeling and Enhancement of Piezoelectric Accelerometer Relative Sensitivity

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

The piezoelectric accelerometer is an electronic instrument based on the direct effect of the piezoelectric material, this device is widely used in the industries to monitor and detect defects of rotating machines in an early stage. In this paper, a thorough study of the piezoelectric accelerometer is carried out to understand its design and operation principle. A mathematical model of the accelerometer is developed based on Newton motion law then a new relative sensitivity equation in function of measurement error is extracted. This new equation has allowed a significant reduction in the measurement error, a maximum improvement in the precision and an optimization of the piezoelectric accelerometer relative sensitivity by the appropriate choice of damping rate. These improvements have optimized the accelerometer parameters and performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ω:

The relative frequency

ω0 :

The natural frequency

ξ:

The damping rate

m:

The mass

c:

The damping factor

k:

The elasticity coefficient

y:

The absolute motion

z:

The relative vibratory motion

S1 :

The mechanical sensitivity

γ:

The acceleration

E:

The measurement error

Q:

The electric charge

S:

The sensitivity

C:

The accelerometer internal impedance

R:

The insulation resistance

S2 :

The electrical sensitivity

Sr :

Relative sensitivity

References

  1. Elfezazi, S. et al. (2003). Vers un outil, basé sur l’analyse fonctionnelle, pour la mise en œuvre des indicateurs de mesure de performance de la fonction maintenance. Revue française de gestion industrielle, 22(3), 1–15.

    Google Scholar 

  2. Gelders, L. et al. la gestion des pièces de rechange et la sous-traitance: quelques directives pratiques. Revue Française de gestion industrielle, 22(3), 1–10.

  3. Molina, A. O. (2005). Méthodologie pour le placement des capteurs à base de méthodes de classification en vue du diagnostic, Doctorat de l’institut national des sciences appliquées de Toulouse.

  4. Boulonger, A., & Pachaud, C. (1988). Diagnostic vibratoire en maintenance préventive. Paris: Dunod.

    Google Scholar 

  5. Des Forges, X. Méthodologie de surveillance en fabrication mécanique: Application de capteur intelligent à la surveillance d’une machine-outil. Thèse de Doctorat, Université Bordeaux I, Janvier 99.

  6. Debray, K., Bogard, F., & Guo, Y.-Q. (2004). Numerical methodology to easily detect defects in revolving machines by vibration analysis. Archive of Applied Mechanics, 74, 45. https://doi.org/10.1007/bf02637208.

    Article  MATH  Google Scholar 

  7. Dong S. –P., Yang, J., Fan, X. -W. (2017) Signal optimization of the AE piezoelectric sensor. In: 2017 Symposium on piezoelectricity, acoustic waves, and device applications (SPAWDA), Chengdu, China. https://doi.org/10.1109/spawda.2017.8340297. Accessed 27–30 Oct 2017

  8. Hoshyarmanesh, H., & Maddahi, Y. (2017). Poling process of composite piezoelectric sensors for structural health monitoring: A pilot comparative study. IEEE Sensors Letters, 2(1), 1472–2475. https://doi.org/10.1109/lsens.2018.2806301.

    Article  Google Scholar 

  9. Al Ahmad, M., & Ahmed, S. (2017). Heart-rate and pressure-rate determination using piezoelectric sensor from the neck. In 2017 4th IEEE international conference on engineering technologies and applied sciences (ICETAS), 29 Nov–1 Dec 2017. Salmabad, Bahrain, https://doi.org/10.1109/icetas.2017.8277911.

  10. Booth, R., & Goldsmith, P. (2017). Detecting finger gestures with a wrist worn piezoelectric sensor array. In 2017 IEEE international conference on systems, man, and cybernetics (SMC), 5–8 Oct 2017, Banff, AB, Canada, https://doi.org/10.1109/smc.2017.8123202.

  11. Kim, M.-K., & Yoon, S.-W. (2018). Miniature piezoelectric sensor for in-situ temperature monitoring of silicon and silicon carbide power modules operating at high temperature. IEEE Transactions on Industry Applications, 54(2), 1614–1621. https://doi.org/10.1109/tia.2017.2777923.

    Article  Google Scholar 

  12. Mahbub, I., et al. (2015). A low-power wireless piezoelectric sensor-based respiration monitoring system realized in CMOS process. IEEE Sensors Journal, 17(6), 1858–1864. https://doi.org/10.1109/jsen.2017.2651073.

    Article  Google Scholar 

  13. Ahmadi, S., & Azhari, S.-J. (2018). A novel fully differential second generation current conveyor and its application as a very high CMRR instrumentation amplifier. Emerging Science Journal, 2(2), 85–92. https://doi.org/10.28991/esj-2018-01131.

    Article  Google Scholar 

  14. Omidi, A., Karami, R., Emadi, P.-S., & Moradi, H. (2017). Design of the low noise amplifier circuit in band L for improve the gain and circuit stability. Emerging Science Journal, 1(4), 192–200. https://doi.org/10.28991/ijse-01122.

    Article  Google Scholar 

  15. Rezaee, M., Gisel, M.-N., & Saffari, S. (2017). Mathematical modeling and sensitivity analysis on cadmium transport in kaolinite under direct current electric field. Civil Engineering Journal, 3(11), 1097–1110. https://doi.org/10.28991/cej-030940.

    Article  Google Scholar 

  16. Najafgholipour, M., & Soodbakhsh, N. (2016). Modified differential transform method for solving vibration equations of MDOF systems. Civil Engineering Journal, 2(4), 123–139.

    Article  Google Scholar 

  17. Jahanirad, H., & Karam, H. (2017). BIST-based testing and diagnosis of LUTs in SRAM-based FPGAs. Emerging Science Journal, 1(4), 216–225.

    Google Scholar 

  18. Hu, J., Peng, H., Liu, T., Yao, X., Wu, H., & Lu, P. (2019). A flow sensing method of power spectrum based on piezoelectric effect and vortex-induced vibrations. Measurement, 131, 473–481. https://doi.org/10.1016/j.measurement.2018.08.020.

    Article  Google Scholar 

  19. Danouj, B., Tahan, S. A., & David, E. (2013). Using a new generation of piezoelectric sensors for partial discharge detection. Measurement, 46, 660–666. https://doi.org/10.1016/j.measurement.2012.09.005.

    Article  Google Scholar 

  20. Zhao, S., & Fu, H. (2018). A novel vibration sensor system for frequency measurement based on Bias Flip technique. Measurement, 124, 56–63. https://doi.org/10.1016/j.measurement.2018.03.070.

    Article  Google Scholar 

  21. Noheda, B., Gonzalo, J. A., Cross, L. E., Guo, R., Park, S.-E., Cox, D. E., Shirane, G. (2000). Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: The structure of PbZr0.52Ti0.48O3. Physical Review B, 61(13), 1–18.

    Article  Google Scholar 

Download references

Acknowledgements

The authors like to thank the Algerian general direction of research (DGRSDT) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zine Ghemari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reguieg, S.K., Ghemari, Z., Benslimane, T. et al. Modeling and Enhancement of Piezoelectric Accelerometer Relative Sensitivity. Sens Imaging 20, 1 (2019). https://doi.org/10.1007/s11220-018-0222-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-018-0222-y

Keywords

Navigation