Skip to main content
Log in

Artifacts and Visible Singularities in Limited Data X-Ray Tomography

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

We describe a principle to determine which features of an object will be easy to reconstruct from limited X-ray CT data and which will be difficult. The principle depends on the geometry of the data set, and it applies to any limited data set. We also describe a characterization of Frikel and the author explaining artifacts that can be added to limited angle reconstructions, and we provide an easy-to-implement method to decrease them. These ideas are justified using microlocal analysis, deep mathematics that involves Fourier theory. Reconstructions from simulated and real limited data are given to illustrate our ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bates, R., & Lewitt, R. (1978). Image reconstruction from projections: I—general theoretical considerations. Optik, 50, 19–33.

    Google Scholar 

  2. Bates, R., & Lewitt, R. (1978). Image reconstruction from projections: III—projection completion methods (theory). Optik, 50, 189–204.

    Google Scholar 

  3. Bates, R., & Lewitt, R. (1978). Image reconstruction from projections: IV—projection completion methods (computational examples). Optik, 50, 269–278.

    Google Scholar 

  4. Beylkin, G. (1984). The inversion problem and applications of the generalized Radon transform. Communications on Pure and Applied Mathematics, 37, 579–599.

    Article  MathSciNet  MATH  Google Scholar 

  5. Cormack, A. M. (1963). Representation of a function by its line integrals with some radiological applications. Journal of Applied Physics, 34, 2722–2727.

    Article  MATH  Google Scholar 

  6. Cormack, A. M. (1964). Representation of a function by its line integrals with some radiological applications II. Journal of Applied Physics, 35, 2908–2913.

    Article  MATH  Google Scholar 

  7. Davison, M., & Grünbaum, F. (1981). Tomographic reconstruction with arbitrary directions. Communications on Pure and Applied Mathematics, 34, 77–120.

    Article  MathSciNet  MATH  Google Scholar 

  8. deHoop, M. (2003). Microlocal analysis of seismic inverse scattering, Mathematical Sciences Research Institute Publications (vol. 47, pp. 219–296). Cambridge: Cambridge Univ. Press.

  9. Faridani, A., Finch, D., Ritman, E. L., & Smith, K. T. (1997). Local tomography II. SIAM Journal on Applied Mathematics, 57, 1095–1127.

    Article  MathSciNet  MATH  Google Scholar 

  10. Faridani, A., Ritman, E. L., & Smith, K. T. (1992). Local tomography. SIAM Journal on Applied Mathematics, 52, 459–484.

    Article  MathSciNet  MATH  Google Scholar 

  11. Fidler, T., Grasmair, M., & Scherzer, O. (2012). Shape reconstruction with a priori knowledge based on integral invariants. SIAM Journal on Imaging Sciences, 5(2), 726–745.

    Article  MathSciNet  MATH  Google Scholar 

  12. Finch, D. V. (1985). Cone beam reconstruction with sources on a curve. SIAM Journal on Applied Mathematics, 45(4), 665–673.

  13. Finch, D. V., Lan, I. R., & Uhlmann, G. (2003). Microlocal analysis of the restricted X-ray transform with sources on a curve. In G. Uhlmann (Ed.), Inside out, inverse problems and applications, MSRI Publications (Vol. 47, pp. 193–218). Cambridge: Cambridge University Press.

    Google Scholar 

  14. Frikel, J. (2013). Sparse regularization in limited angle tomography. Applied and Computational Harmonic Analysis, 34(1), 117–141.

    Article  MathSciNet  MATH  Google Scholar 

  15. Frikel, J., & Quinto, E. T. (2013). Characterization and reduction of artifacts in limited angle tomography. Inverse Problems, 29(12), 125007.

    Article  MathSciNet  MATH  Google Scholar 

  16. Frikel, J., & Quinto, E. T. (2015). Artifacts in incomplete data tomography with applications to photoacoustic tomography and sonar. SIAM Journal on Applied Mathematics, 75(2), 703–725.

    Article  MathSciNet  MATH  Google Scholar 

  17. Frikel, J., & Quinto, E. T. (2016). Limited data problems for the generalized Radon transform in \(\mathbb{R}^n\). SIAM Journal on Mathematical Analysis, 48, 2301–2318.

    Article  MathSciNet  MATH  Google Scholar 

  18. Greenleaf, A., & Uhlmann, G. (1989). Non-local inversion formulas for the X-ray transform. Duke Mathematical Journal, 58, 205–240.

    Article  MathSciNet  MATH  Google Scholar 

  19. Guillemin, V. (1985). On some results of Gelfand in integral geometry. Proceedings of Symposia in Pure Mathematics, 43, 149–155.

    Article  MathSciNet  MATH  Google Scholar 

  20. Guillemin, V., & Sternberg, S. (1977). Geometric asymptotics. Providence, RI: American Mathematical Society.

    Book  MATH  Google Scholar 

  21. Hansen, P. C. (2010). Discrete inverse problems: Insight and algorithms. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  22. Helgason, S. (2011). Integral geometry and Radon transforms. New York: Springer.

    Book  MATH  Google Scholar 

  23. Hörmander, L. (1971). Fourier integral operators. I. Acta Mathematica, 127, 79–183.

    Article  MathSciNet  MATH  Google Scholar 

  24. Hörmander, L. (2003). The analysis of linear partial differential operators. I. Classics in Mathematics. Berlin: Springer. Distribution theory and Fourier analysis, Reprint of the second (1990) edition [Springer, Berlin]

  25. Katsevich, A. (1997). Local tomography for the limited-angle problem. Journal of Mathematical Analysis and Applications, 213(1), 160–182.

    Article  MathSciNet  MATH  Google Scholar 

  26. Katsevich, A. (2016). Reconstruction algorithms for a class of restricted ray transforms without added singularities. Journal of Fourier Analysis and Applications,. doi:10.1007/s00041-016-9473-y.

    MATH  Google Scholar 

  27. Krishnan, V. P., & Quinto, E. T. (2011). Microlocal aspects of common offset synthetic aperture radar imaging. Inverse Problems and Imaging, 5(3), 659–674. doi:10.3934/ipi.2011.5.659.

    Article  MathSciNet  MATH  Google Scholar 

  28. Krishnan, V. P., & Quinto, E. T. (2015). Microlocal analysis in tomography. In O. Scherzer (Ed.), Handbook of mathematical methods in imaging, Chap. 18 (pp. 847–902). New York: Springer.

    Chapter  Google Scholar 

  29. Kuchment, P., Lancaster, K., & Mogilevskaya, L. (1995). On local tomography. Inverse Problems, 11, 571–589.

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, B., Wang, G., Ritman, E. L., Cao, G., Lu, J., Zhou, O., et al. (2011). Image reconstruction from limited angle projections collected by multisource interior X-ray imaging systems. Physics in Medicine and Biology, 56, 6337–6357. doi:10.1088/0031-9155/56/19/012.

    Article  Google Scholar 

  31. Louis, A. K. (1980). Picture reconstruction from projections in restricted range. Mathematical Methods in the Applied Sciences, 2, 209–220.

    Article  MathSciNet  MATH  Google Scholar 

  32. Louis, A. K. (1986). Incomplete data problems in X-ray computerized tomography I. Singular value decomposition of the limited angle transform. Numerische Mathematik, 48, 251–262.

    Article  MathSciNet  Google Scholar 

  33. Louis, A. K. (1999). A unified approach to regularization methods for linear ill-posed problems. Inverse Problems, 15, 489–498.

    Article  MathSciNet  MATH  Google Scholar 

  34. Louis, A. K. (2011). Feature reconstruction in inverse problems. Inverse Problems, 27, 065010.

    Article  MathSciNet  MATH  Google Scholar 

  35. Natterer, F. (1980). Efficient implementation of ‘optimal’ algorithms in computerized tomography. Mathematical Methods in the Applied Sciences, 2, 545–555.

    Article  MathSciNet  MATH  Google Scholar 

  36. Natterer, F. (1986). The mathematics of computerized tomography. Stuttgart: B. G. Teubner.

    MATH  Google Scholar 

  37. Natterer, F., & Wübbeling, F. (2001). Mathematical methods in image reconstruction. Philadelphia, PA: SIAM Monographs on Mathematical Modeling and Computation: Society for Industrial and Applied Mathematics (SIAM).

  38. Nguyen, L. V. (2015). How strong are streak artifacts in limited angle computed tomography? Inverse Problems, 31(5), 055003–055026.

    Article  MathSciNet  MATH  Google Scholar 

  39. Nguyen, L. V. (2015). On artifacts in limited data spherical radon transform: flat observation surfaces. SIAM Journal on Mathematical Analysis, 47(4), 2984–3004. doi:10.1137/140980740.

    Article  MathSciNet  MATH  Google Scholar 

  40. Palamodov, V. (2000). Reconstruction from limited data of arc means. Journal of Fourier Analysis and Applications, 6, 25–42.

    Article  MathSciNet  MATH  Google Scholar 

  41. Quinto, E. T. (1983). Singular value decompositions and inversion methods for the exterior Radon transform and a spherical transform. Journal of Mathematical Analysis and Applications, 95, 437–448.

    Article  MathSciNet  MATH  Google Scholar 

  42. Quinto, E. T. (1988). Tomographic reconstructions from incomplete data-numerical inversion of the exterior Radon transform. Inverse Problems, 4, 867–876.

    Article  MathSciNet  MATH  Google Scholar 

  43. Quinto, E. T. (1993). Singularities of the X-ray transform and limited data tomography in \(\mathbb{R}^2\) and \(\mathbb{R}^3\). SIAM Journal on Mathematical Analysis, 24(5), 1215–1225.

    Article  MathSciNet  MATH  Google Scholar 

  44. Quinto, E. T. (1998). Exterior and limited angle tomography in non-destructive evaluation. Inverse Problems, 14, 339–353.

    Article  MathSciNet  MATH  Google Scholar 

  45. Quinto, E. T. (2006). An introduction to X-ray tomography and Radon transforms. In G. Olafsson & E. T. Quinto (Eds.), The Radon transform, inverse problems, and tomography (pp. 1–23). Providence, RI: Amer. Math. Soc.

  46. Quinto, E. T. (2007). Local algorithms in exterior tomography. Journal of Computational and Applied Mathematics, 199, 141–148.

    Article  MathSciNet  MATH  Google Scholar 

  47. Quinto, E. T., & Öktem, O. (2008). Local tomography in electron microscopy. SIAM Journal on Mathematical Analysis, 68, 1282–1303.

    MathSciNet  MATH  Google Scholar 

  48. Rudin, W. (1973). Functional analysis, McGraw-Hill Series in Higher Mathematics. New York: McGraw-Hill Book Co.

    Google Scholar 

  49. Stefanov, P., & Uhlmann, G. (2013). Is a curved flight path in SAR better than a straight one? SIAM Journal on Applied Mathematics, 73(4), 1596–1612.

    Article  MathSciNet  MATH  Google Scholar 

  50. Trèves, F. (1980). Introduction to pseudodifferential and Fourier integral operators. Volume 2: Fourier integral operators. New York: Plenum Press.

    Book  MATH  Google Scholar 

  51. Vainberg, E., Kazak, I. A., & Kurozaev, V. P. (1981). Reconstruction of the internal three-dimensional structure of objects based on real-time integral projections. Soviet Journal of Nondestructive Testing, 17, 415–423.

    Google Scholar 

Download references

Acknowledgements

The author is indebted to DTU Compute for a stimulating and congenial semester. He thanks his DTU colleagues, graduate students, and Danish high school students with whom he discussed these ideas for their astute questions and observations about this work. The author thanks Jürgen Frikel for discussions and work that informed this article as well as for Fig. 8. He thanks Leise Borg and Jakob Jørgensen for their insights on limited data tomography. The author also thanks Ming Jiang for helpful discussions about this research. He thanks the local organizers for a stimulating International Conference on Sensing and Imaging, 2016 in Taiyuan, China. The author thanks the U.S. National Science Foundation for support under Grant DMS 1311558 and the Otto Mønsteds Fond for its support during his time at Danish Technical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Todd Quinto.

Additional information

This article is part of the Topical Collection on Recent Developments in Sensing and Imaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quinto, E.T. Artifacts and Visible Singularities in Limited Data X-Ray Tomography. Sens Imaging 18, 9 (2017). https://doi.org/10.1007/s11220-017-0158-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-017-0158-7

Keywords

Navigation