Skip to main content
Log in

Readout Circuits for Noise Compensation in ISFET Sensory System

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

This paper presents two different noise reduction techniques for ion sensitive field effect transistor (ISFET) readout configuration and their comparison. The proposed circuit configurations are immune to the noise generated from the ISFET sensory system and particularly to the low frequency pH dependent 1/f electrochemical noise. The methods used under this study are compensation of noise by differential OPAMP based and Wheatstone bridge circuit, where two identical commercial ISFET sensors were used. The statistical and frequency analysis of the data generated by this two methods were compared for different pH value ranging from pH 2 to 10 at room temperature, and it is found that the readout circuits are able to compensate the noise to a great extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bergveld, P. (1972). Development, operation and application of ion- sensitive field-effect transistor as tool for electrophysiology. IEEE Transactions on Biomedical Engineering, 19, 342–351.

    Article  Google Scholar 

  2. Bergveld, P. (2003). ISFET, theory and practice, IEEE sensor conference Toronto, pp. 1–25.

  3. Bergveld, P. (2000). Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sensors and Actuators, B: Chemical Sensors and Materials, 88, 1–20.

    Article  Google Scholar 

  4. Hernández, P. R., Taboada, C., Leija, L., Tsutsumi, V., Vázquez, B., Valdés-Perezgasga, F., & Reyes, J. L. (1998). Evaluation of biocompatibility of pH-ISFET materials during long-term subcutaneous implantation. Sensors and Actuators, B: Chemical Sensors and Materials, 46, 133–138.

    Article  Google Scholar 

  5. Clement, N., Nishiguchi, K., Dufreche, J. F., Guerin, D., Fujiwara, A., & Vuillaume, D. (2011). A silicon nanowire ion-sensitive field-effect-transistor with elementary charge sensitivity. Applied Physics Letters, 98, 014104–014109.

    Article  Google Scholar 

  6. Haemmerli, A., Janata, J., & Brophy, J. J. (1982). Equilibrium noise in ion selective field effect transistors. Journal of the Electrochemical Society, 129, 2306–2312.

    Article  Google Scholar 

  7. Deen, M. J., Shinwari, M. W., & Ranuarez, J. C. (2006). Noise consideration in field-effect biosensors. Journal of Applied Physics, 100, 1074–1082.

    Article  Google Scholar 

  8. Chan, P. K., & Chen, D. Y. (2007). A CMOS ISFET interface circuit with dynamic current temperature compensation technique. IEEE Transaction on Circuit and Systems-I, 54(1), 119–129.

    Article  Google Scholar 

  9. Chen, D. Y., & Chan, P. K. (2008). An intelligent ISFET sensory system with temperature and drift compensation for long-term monitoring. IEEE Sensor Journal, 8, 1948–1959.

    Article  Google Scholar 

  10. Jamasb, S. (2004). An analytical technique for counteracting drift in ion-selective field effect transistor (ISFETs). IEEE Sensor Journal, 4, 795–800.

    Article  Google Scholar 

  11. Premanode, B., Silawan, N., & Toumazou, C. (2007). Drift reduction in ion-sensitive FETs using correlated double sampling. Electronics Letters, 43, 1–2.

    Article  Google Scholar 

  12. Israeloff, N. E. (1996). Dielectric polarization of noise through the glass transition. Physical Review B, 53, 11913–11916.

    Article  Google Scholar 

  13. Akiba, M. (1997). 1/f dielectric polarization noise in silicon p–n junctions. Applied Physics Letter, 71, 3236–3238.

    Article  Google Scholar 

  14. Jamasb, S., Churchill, J. N., Collins, S. D., & Smith, R. L. (1998). Accurate continuous monitoring using ISFET-based biosensors based on characterization and modeling of drift and low frequency noise. In: Proceedings of the 20th annual international conference of the IEEE engineering in medicine and biology society, 20, pp. 2864–2867.

  15. Jakobson, C. G., & Nemirovsky, Y. (1998). l/f Noise in ion selective field effect transistors compared to MOSFETs. In Electrotechnical conference MELECON 98, 9th Mediterranean, pp. 1456–1460.

  16. Hassibi, A., Navid, R., Dutton, R. W., & Lee, T. H. (2004). Comprehensive study of noise processes in electrode electrolyte interfaces. Journal of Applied Physics, 96, 1074–1082.

    Article  Google Scholar 

  17. Das, M. P., & Bhuyan, M. (2013). Modeling of pH dependent electrochemical noise in ion sensitive field effect transistors ISFET. Sensors & Transducers, 149, 102–108.

    Google Scholar 

  18. Jamasb, S., Collins, S. D., & Smith, R. L. (1998). A physical model for threshold voltage instability in gate H+-sensitive FET’s (pH ISFET’s). Electron Devices, IEEE Transactions on, 45, 1239–1245.

    Article  Google Scholar 

  19. Woias, P., Meixner, L., & Fröstl, P. (1998). Slow pH response effects of siliconnitride ISFET sensors. Sensors and Actuators, B: Chemical Sensors and Materials, 48, 501–504.

    Article  Google Scholar 

  20. Bousse, L. J., Hafeman, D., & Tran, N. (1991). Time dependence of the chemical response of silicon nitride surfaces. Sensors and Actuators, B: Chemical Sensors and Materials, 1, 361–367.

    Article  Google Scholar 

  21. Yu, D., Wei, Y. D., & Wang, G. H. (1991). Time-dependent response characteristics of pH-sensitive FET. Sensors and Actuators, B: Chemical Sensors and Materials, 3, 279–285.

    Article  Google Scholar 

  22. Barabash, P. R., Cobbold, R. S. C., & Wlodarski, W. B. (1987). Analysis of the threshold voltage and its temperature dependence in electrolyte-insulator-semiconductor field-effect transistor (EISFET’s). IEEE Transactions on Electron Devices, 34, 1271–1282.

    Article  Google Scholar 

  23. Martinoia, S., Lorenzelli, L., Massobrio, G., Conci, P., & Lui, A. (1998). Temperature effects on the ISFET behavior: Simulations and measurements. Sensors and Actuators, B: Chemical Sensors and Materials, 50, 60–68.

    Article  Google Scholar 

  24. Chou, J. C., Wang, Y. F., & Lin, J. S. (2000). Temperature effect of a-Si: H pH-ISFET. Sensors and Actuators, B: Chemical Sensors and Materials, 62, 92–96.

    Article  Google Scholar 

  25. Chou, J. C., Weng, C. Y., & Tsai, H. M. (2002). Study on the temperature effect of Al2O3 gate pH-ISFET. Sensors and Actuators, B: Chemical Sensors and Materials, 81, 152–157.

    Article  Google Scholar 

  26. Filanovsky, I. M., & Allam, A. (2001). Mutual compensation of mobility and threshold voltage temperature effects Vth applications in CMOS circuits. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 48, 876–884.

    Article  Google Scholar 

  27. Chiang, J. L., Jan, S. S., Chou, J. C., & Chen, Y. C. (2001). Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide. Sensors and Actuators, B: Chemical Sensors and Materials, 76, 624–628.

    Article  Google Scholar 

  28. Jakobson, C. G., & Nemirovsky, Y. (1998). 1/f noise in ion sensitive field effect transistor from subthreshold to saturation. IEEE Transactions on Electron Device, 2, 1456–1460.

    Google Scholar 

  29. Chung, W. Y., Yang, C. H., Pijanowska, D. G., Krzyskow, A., & Torbicz, W. (2004). ISFET interface circuit embedded with noise rejection capability. Electronics Letters, 40, 1115–1116.

    Article  Google Scholar 

  30. Chung, W. Y., Lin, Y. T., Pijanowska, D. G., Yang, C., Wang, M. C., Krzyskow, A., & Torbicz, W. (2006). New ISFET interface circuit design with temperature compensation. Microelectronics Journal, 37, 1105–1114.

    Article  Google Scholar 

  31. Thanachayanont, A., & Sirimasakul, S. (2009). Ultra-low-power differential ISFET/REFET readout circuit. ETRI Journal, 31, 243–245.

    Article  Google Scholar 

  32. Muller, E., Woias, P., Hein, P., & Koch, S. (1991). Differential ISFET/REFET pairs as a reference system for integrated ISFET-Sensor arrays. In Solid-State Sensors and Actuators, Digest of Technical Papers, TRANSDUCERS’91, pp. 467–470. doi:10.1109/SENSOR.1991.148913.

  33. Chodavarapu, V. P., Titus, A. H., & Cartwright, A. N. (2005). Differential read-out architecture for CMOS ISFET microsystems. Electronics Letters, 41, 12.

    Google Scholar 

  34. Wong, H. S., & White, M. H. (1989). A cmos-integrated ISFET-operational amplifier chemical sensor employing differential sensing. IEEE Transactions on Electron Devices, 36, 479–487.

    Article  Google Scholar 

  35. Ghallab, Y. H., Badawy, W., & Kaler, K. V. (2003). A novel ph sensor using differential ISFET current mode read–out circuit. MEMS, NANO and Smart Systems, pp. 255–258.

  36. Nobpakoon, T., Pijitrojana, W., & Poyai, A. (2013). A new method for current differential ISFET/REFET. International Journal of Information and Electronics, Engineering, 3, 141–143.

    Google Scholar 

  37. Morgenshtein, A., Sudakov-Boreysha, L., Dinnar, U., Jakobson, C. G., & Nemirovsky, Y. (2004). Wheatstone-bridge readout interface for ISFET/REFET application. Sensors and Actuators B: Chemical, 98, 18–27.

    Article  Google Scholar 

  38. Casans, S., Navarro, A. E., Ramırez, D., Castro, E., Baldi, A., & Abramova, N. (2003). Novel voltage-controlled conditioning circuit applied to the ISFETs temporary drift and thermal dependency. Sensors and Actuators, B: Chemical Sensors and Materials, 91, 11–16.

    Article  Google Scholar 

  39. Chung, W. Y., Yang, C. H., Pijanowska, D. G., Grabiec, P. B., & Torbicz, W. (2006). ISFET performance enhancement by using the improved circuit technique. Sensors and Actuators B: Chemical, 113, 555–562.

    Article  Google Scholar 

  40. Shinwari, M. W., Deen, M. J., & Landheer, D. (2007). Study of the electrolyte-insulator-semiconductor field effect transistor (EISFET) with applications in biosensor design. Microelectronics Reliability, 47, 2025–2047.

    Article  Google Scholar 

  41. Deen, M. J., Shinwari, M. W., Landheer, D., & Lopinski, G. (2006). High sensitivity detection of biological species via the field-effect. The IEEE international Caribbean conference on devices, circuits and systems, pp. 381–385.

  42. Deen, M. J., & Marinov, O. (2005). Noise in advanced electronic devices and circuits. 18th International conference on noise and fluctuations—ICNF 2005. AIP conference proceedings, pp. 3–12.

  43. Deen, M. J., & Marinov, O. (2002). Effect of forward and reverse substrate biasing on low frequency noise in silicon PMOSFETs. IEEE Transactions on Electron Devices, 49, 409–413.

    Article  Google Scholar 

  44. Marin, M., Deen, M. J., Murcia, M. D., Llinares, P., & Vildeuil, J. C. (2004). Effects of body biasing on the low frequency noise of MOSFETs from a 130 nm CMOS technology, circuits, devices and systems, IEE proceeding, pp. 95–101.

  45. Morgenshtein, A. (2003). Design and methodology for ISFET (ion sensitive field-effect transistor) microsystems for bioteltmetry. M.Sc. thesis, Israel Institute of Technology, Haifa, April 2003.

  46. Janata, J. (2009). Principles of chemical sensors, (2nd ed., pp. 152–153). USA: Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, M.P., Bhuyan, M. & Talukdar, C. Readout Circuits for Noise Compensation in ISFET Sensory System. Sens Imaging 16, 1 (2015). https://doi.org/10.1007/s11220-014-0103-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-014-0103-y

Keywords

Navigation