Skip to main content
Log in

Shock Induced Strong Substorms and Super Substorms: Preconditions and Associated Oxygen Ion Dynamics

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

It is well known that the interaction between interplanetary (IP) shocks and the Earth’s magnetosphere would generate/excite various types of geomagnetic phenomena. Progresses have been made on the Earth’s magnetospheric response to solar wind forcing in recent years in the aspects associated with magnetospheric substorms. Strong substorms and super substorms could be triggered externally by sudden changes of solar wind dynamic pressures. When a strong substorms (AE > 1000 nT) or super substorms (AE > 2000 nT) occurs, singly charged oxygen ions escaped from the Earth’s ionosphere are found to be a dominated ion population in the magnetotail and in the inner magnetosphere—ring current region. The products of a strong substorms or super substorms- plasmoid, burst bulk flows are also found to contain significant oxygen ions, even substorm injections can be dominated by oxygen ions. Thus, the magnetospheric dynamic must consider the contributions from the heavy oxygen ions. Also, the IP shock induced super substorms associated electromagnetic pulses (dB/dt) would shift the energetic particle (injections) inward and accelerate existing population significantly.

Extensive attempts have also been made to understand how the solar wind energy couples with the magnetosphere to excite magnetospheric substorms. The statistical analysis shows that strong substorms (AE > 1000 nT) and super substorms (AE > 2000 nT) triggered by interplanetary shocks are most likely to occur under the southward interplanetary magnetic field (IMF) and fast solar wind pre-conditions. In addition, strong substorms after the IP shock arrival are more likely to occur when IMF points toward (away from) the Sun around spring (autumn) equinox, which can be ascribed to the Russell-McPherron effect. Thus, the southward IMF precondition of an interplanetary shock and the Russell-McPherron effect can be considered as precursors of a strong substorm and/or super substorm triggered by IP shocks. Moreover, the average duration of CME sheath region which is just behind the interplanetary shock are found to be about 7 hours. This indicates that southward IMF compressed by shock could last at least 7 hours long in the downstream of the interplanetary shock (sheath region) if a southward IMF pre-condition is present, which explains why the largest substorm often occur in the CME sheath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

No new data sets were used in this article.

References

  • S.-I. Akasofu, J.K. Chao, Interplanetary shock waves and magnetospheric substorms. Planet. Space Sci. 28, 381–385 (1980)

    ADS  Google Scholar 

  • J. Allen, The Galaxy 15 anomaly: another satellite in the wrong place at a critical time. Space Weather 8, S06008 (2010). https://doi.org/10.1029/2010SW000588

    Article  ADS  Google Scholar 

  • R. Arnoldy, K. Chan, Particle substorms observed at the geostationary orbit. J. Geophys. Res. 74, 5019–5028 (1969)

    ADS  Google Scholar 

  • D.N. Baker, Perspectives on geospace plasma coupling, in AIP Conference Proceedings, vol. 1320 (American Institute of Physics, New York, 2011), pp. 10–22

    Google Scholar 

  • D.N. Baker, J.B. Blake, L.B. Callis, R.D. Belian, T.E. Cayton, Relativistic electrons near geostationary orbit: evidence for internal magnetospheric acceleration. Geophys. Res. Lett. 16, 531–534 (1979)

    ADS  Google Scholar 

  • D.N. Baker, T.A. Fritz, B. Wilken, P.R. Higbie, S.M. Kaye, M.G. Kivelson, T.E. Moore, W. Stüdemann, A.J. Masley, P.H. Smith, A.L. Vampola, Observation and modeling of energetic particles at synchronous orbit on July 29 1977. J. Geophys. Res. 87, 5917–5932 (1982)

    ADS  Google Scholar 

  • W. Baumjohann, Y. Kamide, Hemispherical Joule heating and the AE indices. J. Geophys. Res. Space Phys. 89(A1), 383–388 (1984)

    ADS  Google Scholar 

  • J. Birn, M.F. Thomsen, J.E. Borovsky, G.D. Reeves, D.J. McComas, R.D. Belian, M. Hesse, Substorm ion injections: geosynchronous observations and test particle orbits in the three-dimensional dynamic MHD fields. J. Geophys. Res. 102, 2325–2341 (1997)

    ADS  Google Scholar 

  • J.L. Burch, Preconditions for the triggering of polar magnetic substorms by storm sudden commencements. J. Geophys. Res. 77, 5629–5632 (1972). https://doi.org/10.1029/JA077i028p05629

    Article  ADS  Google Scholar 

  • R.K. Burton, R.L. McPherron, C.T. Russell, An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 80(31), 4204–4214 (1975)

    ADS  Google Scholar 

  • S. Chapman, J. Bartels, in Geomagnetism, vol. 1, ed. by A.J. Dessler, W.E. Francis, E.N. Parker, Clarendon, Oxford (1940), 336 pp.

    Google Scholar 

  • X. Chu, R.L. McPherron, T.-S. Hsu, V. Angelopoulos, Solar cycle dependence of substorm occurrence and duration: implications for onset. J. Geophys. Res. Space Phys. 120(4), 2808–2818 (2015). https://doi.org/10.1002/2015ja021104

    Article  ADS  Google Scholar 

  • M.A. Clilverd, C.J. Rodger, D. Danskin, M.E. Usanova, T. Raita, T. Ulich, E.L. Spanswick, Energetic particle injection, acceleration, and loss during the geomagnetic disturbances which upset Galaxy 15. J. Geophys. Res. 117, A12213 (2012). https://doi.org/10.1029/2012JA018175

    Article  ADS  Google Scholar 

  • D.S. Colburn, C.P. Sonett, Discontinuities in the solar wind. Space Sci. Rev. 5, 439–506 (1966)

    ADS  Google Scholar 

  • M. Connors, C.T. Russell, V. Angelopoulos, Magnetic flux transfer in the 5 April 2010 Galaxy 15 substorm: an unprecedented observation, in Annales Geophysicae, vol. 29 (Copernicus GmbH, Göttingen, 2011), p. 619

    Google Scholar 

  • N.U. Crooker, E.W. Cliver, B.T. Tsurutani, The semiannual variation of great geomagnetic storms and the postshock Russell-McPherron effect preceding coronal mass ejecta. Geophys. Res. Lett. 19, 429–432 (1992)

    ADS  Google Scholar 

  • I.A. Daglis, R.M. Thorne, W. Baumjohann, S. Orsini, The terrestrial ring current: origin, formation, and decay. Rev. Geophys. 37(4), 407–438 (1999)

    ADS  Google Scholar 

  • L. Dai, C. Wang, S. Duan, Z. He, J.R. Wygant, C.A. Cattell, X. Tao, Z. Su, C. Kletzing, D.N. Baker, X. Li, D. Malaspina, J.B. Blake, J. Fennell, S. Claudepierre, D.L. Turner, G.D. Reeves, H.O. Funsten, H.E. Spence, V. Angelopoulos, D. Fruehauff, L. Chen, S. Thaller, A. Breneman, X. Tang, Near-Earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations. Geophys. Res. Lett. 42, 6170–6179 (2015)

    ADS  Google Scholar 

  • D.C. Delcourt, J.A. Sauvaud, A. Pedersen, Dynamics of single-particle orbits during substorm expansion phase. J. Geophys. Res. Space Phys. 95(A12), 20853–20865 (1990)

    ADS  Google Scholar 

  • I.V. Despirak, A.A. Lyubchich, N.G. Kleimenova, Super substorms and conditions in the solar wind. Geomagn. Aeron. 59, 170–176 (2019). https://doi.org/10.1134/S0016793219020075

    Article  ADS  Google Scholar 

  • J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47 (1961)

    ADS  Google Scholar 

  • E. Echer, W.D. Gonzalez, B.T. Tsurutani, A.L.C. Gonzalez, Interplanetary conditions causing intense geomagnetic storms (\(\text{Dst}\leq - 100\) nT) during solar cycle 23 (1996–2006). J. Geophys. Res. Space Phys. 113(A5), A05221 (2008)

    ADS  Google Scholar 

  • R.H.W. Friedel, A. Korth, G. Kremser, Substorm onset observed by crres: determination of energetic source region. J. Geophys. Res. 101, 13137–13154 (1996)

    ADS  Google Scholar 

  • S.Y. Fu, Q.G. Zong, B. Wilken, Z.Y. Pu, Temporal and spatial variation of the ion composition in the ring current. Space Sci. Rev. 95(1–2), 539–554 (2001)

    ADS  Google Scholar 

  • S.Y. Fu, Q.G. Zong, T.A. Fritz, Z.Y. Pu, B. Wilken, Composition signatures in ion injections and its dependence on geomagnetic conditions. J. Geophys. Res. Space Phys. 107(A10), SMP–14 (2002)

    Google Scholar 

  • H. Fu, C. Yue, Q.-G. Zong, X.-Z.Zhou, S. Fu, Statistical characteristics of substorms with different intensity (2021). Submitted to JGR

  • S.A. Fuselier, H.U. Frey, K.J. Trattner, S.B. Mende, J.L. Burch, Cusp aurora dependence on interplanetary magnetic field \(B_{z}\). J. Geophys. Res. Space Phys. 107(A7), SIA–6 (2002)

    Google Scholar 

  • C. Gabrielse, V. Angelopoulos, A. Runov, D.L. Turner, Statistical characteristics of particle injections throughout the equatorial magnetotail. J. Geophys. Res. Space Phys. 119(4), 2512–2535 (2014)

    ADS  Google Scholar 

  • J.W. Gjerloev, The supermag data processing technique. J. Geophys. Res. 117, A09213 (2012). https://doi.org/10.1029/2012JA017683

    Article  ADS  Google Scholar 

  • W.D. Gonzalez, B.T. Tsurutani, R.P. Lepping, R. Schwenn, Interplanetary phenomena associated with very intense geomagnetic storms. J. Atmos. Sol.-Terr. Phys. 64, 173–181 (2002). https://doi.org/10.1016/S1364-6826(01)00082-7

    Article  ADS  Google Scholar 

  • W.D. Gonzalez, E. Echer, B.T. Tsurutani, A.L.C. de Gonzalez, A. Dal Lago, Interplanetary origin of intense, superintense and extreme geomagnetic storms. Space Sci. Rev. 158(1), 69–89 (2011)

    ADS  Google Scholar 

  • J.T. Gosling, D.J. McComas, J.L. Phillips, S.J. Bame, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res. Space Phys. 96(A5), 7831–7839 (1991)

    ADS  Google Scholar 

  • M. Grande, C.H. Perry, D.S. Hall, B. Wilken, S. Livi, F. Soraas, J.F. Fennell, Proceedings of the International Conference on Substorms (ICS-1) (1992)

    Google Scholar 

  • R. Hajra, B.T. Tsurutani, Interplanetary shocks inducing magnetospheric super substorms (SML < 2500 nT): unusual auroral morphologies and energy flow. Astrophys. J. 858, 123 (2018)

    ADS  Google Scholar 

  • R. Hajra, B.T. Tsurutani, E. Echer, W.D. Gonzalez, J.W. Gjerloev, Super substorms (SML \(<\, -\)2500 nT): magnetic storm and solar cycle dependences. J. Geophys. Res. Space Phys. 121, 7805–7816 (2016). https://doi.org/10.1002/2015JA021835

    Article  ADS  Google Scholar 

  • A.M. Hall, C.H. Perry, M. Grande, M. Lester, B. Wilken, Survey of dispersionless substorm ion injections observed by CRRES. Adv. Space Res. 21(4), 615–618 (1998)

    ADS  Google Scholar 

  • E.M. Harnett, M. Cash, R.M. Winglee, Substorm and storm time ionospheric particle flux at the Moon while in the terrestrial magnetosphere. Icarus 224(1), 218–227 (2013)

    ADS  Google Scholar 

  • J.P. Heppner, Note on the occurrence of world-wide SSC’s during the onset of negative bays at College, Alaska. J. Geophys. Res. 60(1), 29–32 (1955)

    ADS  Google Scholar 

  • Y. Kamide, What determines the intensity of magnetospheric substorms? in Multiscale Coupling of Sun-Earth Processes (Elsevier, Amsterdam, 2005), pp. 175–194

    Google Scholar 

  • K. Kawasaki, S.-I. Akasofu, Low latitude DS component of geomagnetic field. J. Geophys. Res. 76, 2396–2405 (1971)

    ADS  Google Scholar 

  • E.K.J. Kilpua, H. Hietala, H.E.J. Koskinen, D. Fontaine, L. Turc, Magnetic field and dynamic pressure ULF fluctuations in coronal-mass-ejection-driven sheath regions. Ann. Geophys. 31, 1559–1567 (2013). https://doi.org/10.5194/angeo-31-1559-2013

    Article  ADS  Google Scholar 

  • E.K.J. Kilpua, A. Balogh, R. von Steiger et al., Geoeffective properties of solar transients and stream interaction regions. Space Sci. Rev. 212, 1271–1314 (2017). https://doi.org/10.1007/s11214-017-0411-3

    Article  ADS  Google Scholar 

  • S. Kokubun, R.L. McPherron, C.T. Russell, Triggering of substorms by solar wind discontinuities. J. Geophys. Res. 82(1), 74–86 (1977). https://doi.org/10.1029/JA082i001p00074

    Article  ADS  Google Scholar 

  • A. Konradi, Proton events in the magnetosphere associated with magnetic bays. J. Geophys. Res. 72, 3829–3841 (1967)

    ADS  Google Scholar 

  • O.V. Kozyreva, V.A. Pilipenko, V.I. Zakharov et al., GPS–TEC response to the substorm onset during April 5, 2010, magnetic storm. GPS Solut. 21, 927–936 (2017)

    Google Scholar 

  • L. Lanzerotti, C. Roberts, W. Brown, Temporal variations in the electron flux at synchronous altitudes. J. Geophys. Res. 72, 5893–5902 (1967)

    ADS  Google Scholar 

  • X. Li, D.N. Baker, M. Temerin, G.D. Reeves, R.D. Belian, Simulation of dispersionless injections and drift echoes of energetic electrons associated with substorms. Geophys. Res. Lett. 25(20), 3763–3766 (1998)

    ADS  Google Scholar 

  • Y. Liu, Q.-G. Zong, Energetic electron response to interplanetary shocks at geosynchronous orbit. J. Geophys. Res. Space Phys. 120, 4669–4683 (2015). https://doi.org/10.1002/2014JA020756

    Article  ADS  Google Scholar 

  • Z.Y. Liu, Q.-G. Zong, Y.X. Hao, Y. Liu, X.-R. Chen, The radial propagation characteristics of the injection front: A statistical study based on BD-IES and Van Allen Probes observations. J. Geophys. Res. Space Phys. 123, 1927–1937 (2018). https://doi.org/10.1002/2018JA025185

    Article  ADS  Google Scholar 

  • T.M. Loto’aniu, H.J. Singer, J.V. Rodriguez, J. Green, W. Denig, D. Biesecker, V. Angelopoulos, Space weather conditions during the Galaxy 15 spacecraft anomaly. Space Weather 13, 484–502 (2015). https://doi.org/10.1002/2015SW001239

    Article  ADS  Google Scholar 

  • N. Lugaz, C.J. Farrugia, R.M. Winslow et al., Factors affecting the geo-effectiveness of shocks and sheaths at 1 AU. J. Geophys. Res. Space Phys. 121(11), 10861–10879 (2016). https://doi.org/10.1002/2016ja023100

    Article  ADS  Google Scholar 

  • A.T.Y. Lui, What determines the intensity of magnetospheric substorms? J. Atmos. Sol.-Terr. Phys. 55(8), 1123–1136 (1993)

    ADS  Google Scholar 

  • A.T.Y. Lui, Q.G. Zong, C. Wang, M.W. Dunlop, Electron source associated with dipolarization at the outer boundary of the radiation belts: non-storm cases. J. Geophys. Res. Space Phys. 117(A10), A10224 (2012)

    ADS  Google Scholar 

  • L.R. Lyons, D. Lee, C. Wang, S.B. Mende, Global auroral responses to abrupt solar wind changes: dynamic pressure, substorm, and null events. J. Geophys. Res. 110, 8208 (2005). https://doi.org/10.1029/2005JA011089

    Article  Google Scholar 

  • X.-H. Ma, Q.-G. Zong, Y. Liu, The intense substorm incidence in response to interplanetary shock impacts and influence on energetic electron fluxes at geosynchronous orbit. J. Geophys. Res. Space Phys. 124, 3210–3221 (2019). https://doi.org/10.1029/2018JA026115

    Article  ADS  Google Scholar 

  • D.J. McComas, N. Buzulukova, M.G. Connors, M.A. Dayeh, J. Goldstein, H.O. Funsten, S. Fuselier, N.A. Schwadron, P. Valek, Two Wide-Angle Imaging Neutral-Atom Spectrometers and Interstellar Boundary Explorer energetic neutral atom imaging of the 5 April 2010 substorm. J. Geophys. Res. 117, A03225 (2012). https://doi.org/10.1029/2011JA017273

    Article  ADS  Google Scholar 

  • C.E. McIlwain, Substorm injection boundaries, in Magnetospheric Physics, ed. by B.M. McCormac (Springer, Dordrecht, 1974), pp. 143–154

    Google Scholar 

  • R.L. McPherron, Physical processes producing magnetospheric substorms and magnetic storms. Geomagnetism 4, 593–739 (1991)

    ADS  Google Scholar 

  • T. Nagai, A. Yukimatu, A. Matsuoka, K. Asai, J. Green, T. Onsager, H. Singer, Timescales of relativistic electron enhancements in the slot region. J. Geophys. Res. 111, A11205 (2006)

    ADS  Google Scholar 

  • P.T. Newell, J.W. Gjerloev, SuperMAG-based partial ring current indices. J. Geophys. Res. 117, A05215 (2012). https://doi.org/10.1029/2012JA017586

    Article  ADS  Google Scholar 

  • E. Palmerio, E.K. Kilpua, N.P. Savani, Planar magnetic structures in coronal mass ejection-driven sheath regions, in Annales Geophysicae, vol. 34 (Copernicus GmbH, Göttingen, 2016), pp. 313–322

    Google Scholar 

  • G.D. Reeves, T.A. Fritz, T.E. Cayton, R.D. Belian, Multi-satellite measurements of substorm injection region. Geophys. Res. Lett. 17, 2015–2018 (1990)

    ADS  Google Scholar 

  • G.D. Reeves, G. Kettmann, T.A. Fritz, R.D. Belian, Further investigation of the CDAW7 substorm using geosynchronous particle data: multiple injections and their implications. J. Geophys. Res. 97, 6417–6428 (1992)

    ADS  Google Scholar 

  • C.T. Russell, R.L. McPherron, Semiannual variation of geomagnetic activity. J. Geophys. Res. 78, 92–108 (1973)

    ADS  Google Scholar 

  • T.E. Sarris, X. Li, N. Tsaggas, N. Paschalidis, Modeling energetic particle injections in dynamic pulse fields with varying propagation speeds. J. Geophys. Res. Space Phys. 107(A3), SMP–1 (2002)

    Google Scholar 

  • J.P. Schieldge, G.L. Siscoe, A correlation of the occurrence of simultaneous sudden magnetospheric compressions and geomagnetic bay onsets with selected geophysical indices. J. Atmos. Sol.-Terr. Phys. 32(11), 1819–1830 (1970)

    ADS  Google Scholar 

  • M.A. Shay, M. Swisdak, Three-species collisionless reconnection: effect of O+ on magnetotail reconnection. Phys. Rev. Lett. 93(17), 175001 (2004)

    ADS  Google Scholar 

  • C. Sheng, Y. Deng, Y. Lu, X. Yue, Dependence of Pedersen conductance in the E and F regions and their ratio on the solar and geomagnetic activities. Space Weather 15(3), 484–494 (2017)

    ADS  Google Scholar 

  • K. Shiokawa, W. Baumjohann, G. Haerendel, Braking of high-speed flows in the near-Earth tail. Geophys. Res. Lett. 24(10), 1179–1182 (1997)

    ADS  Google Scholar 

  • B.T. Tsurutani, W.D. Gonzalez, The Interplanetary Causes of Magnetic Storms: A Review. Geophysical Monograph Series, vol. 98, (1997) pp. 77–89

    Google Scholar 

  • B.T. Tsurutani, C.-I. Meng, Interplanetary magnetic-field variations and substorm activity. J. Geophys. Res. 77(16), 2964–2970 (1972). https://doi.org/10.1029/JA077i016p02964

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, X.-Y. Zhou, Interplanetary shock triggering of substorms: WIND and polar. Adv. Space Res. 31(4), 1063–1067 (2003)

    ADS  Google Scholar 

  • B.T. Tsurutani, W.D. Gonzalez, F. Tang, S.I. Akasofu, E.J. Smith, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979). J. Geophys. Res. 93, 8519–8531 (1988)

    ADS  Google Scholar 

  • B.T. Tsurutani, R. Hajra, E. Echer, J.W. Gjerloev, Extremely intense (SML ≤ 2500 nT) substorms: isolated events that are externally triggered? Ann. Geophys. Commun. 33, 519–524 (2015). https://doi.org/10.5194/angeo-33-519-2015

    Article  ADS  Google Scholar 

  • B.T. Tsurutani et al., Heliosphericplasma sheet (HPS) impingement onto the magnetosphere as a cause of relativistic electron dropouts (REDs) via coherent EMIC wave scattering with possible consequences for climate change mechanisms. J. Geophys. Res. Space Phys. 121(10), 10,130–10,156 (2016). https://doi.org/10.1002/2016JA022499

    Article  Google Scholar 

  • B.T. Tsurutani, G.S. Lakhina, R. Hajra, The physics of space weather/ solar-terrestrial physics (STP): what we know now and what the current and future challenges are. Nonlinear Process. Geophys. 27, 75–119 (2020). https://doi.org/10.5194/npg-27-75-2020

    Article  ADS  Google Scholar 

  • D.L. Turner, S.G. Claudepierre, J.F. Fennell, T.P. O’Brien, J.B. Blake, C. Lemon, M. Gkioulidou, K. Takahashi, G.D. Reeves, S. Thaller, A. Breneman, J.R. Wygant, W. Li, A. Runov, V. Angelopoulos, Energetic electron injections deep into the inner magnetosphere associated with substorm activity. Geophys. Res. Lett. 42, 2079–2087 (2015)

    ADS  Google Scholar 

  • R.J. Walker, K.N. Erickson, R.L. Swanson, J.R. Winckler, Substorm-associated particle boundary motion at synchronous orbit. J. Geophys. Res. 81(31), 5541–5550 (1976)

    ADS  Google Scholar 

  • D.J. Williams, J.N. Barfield, T.A. Fritz, Initial Explorer 45 substorm observations and electric field considerations. J. Geophys. Res. 79(4), 554–564 (1974)

    ADS  Google Scholar 

  • D.T. Young, H. Balsiger, J. Geiss, Correlations of magnetospheric ion composition with geomagnetic and solar activity. J. Geophys. Res. Space Phys. 87(A11), 9077–9096 (1982)

    ADS  Google Scholar 

  • C. Yue, Q. Zong, Solar wind parameters and geomagnetic indices for four different interplanetary shock/ICME structures. J. Geophys. Res. Space Phys. 116, A12201 (2011). https://doi.org/10.1029/2011JA017013

    Article  ADS  Google Scholar 

  • C. Yue, Q.-G. Zong, Y.F. Wang, Response of the magnetic field and plasmas at the geosynchronous orbit to interplanetary shock. Chin. Sci. Bull. 54, 4241 (2009). https://doi.org/10.1007/s11434-009-0649-6

    Article  Google Scholar 

  • C. Yue, Q.-G. Zong, H. Zhang, Y.F. Wang, C.J. Yuan, Z.Y. Pu, S.Y. Fu, A.T.Y. Lui, B. Yang, C.R. Wang, Geomagnetic activities triggered by interplanetary shocks. J. Geophys. Res. Space Phys. 115, A00I05 (2010). https://doi.org/10.1029/2010JA015356

    Article  ADS  Google Scholar 

  • C. Yue, Q. Zong, Y. Wang, I.I. Vogiatzis, Z. Pu, S. Fu, Q. Shi, Inner magnetosphere plasma characteristics in response to interplanetary shock impacts. J. Geophys. Res. Space Phys. 116, A11206 (2011). https://doi.org/10.1029/2011JA016736

    Article  ADS  Google Scholar 

  • C. Yue, W. Li, Y. Nishimura, Q. Zong, Q. Ma, J. Bortnik, R.M. Thorne, G.D. Reeves, H.E. Spence, C.A. Kletzing, J.R. Wygant, M.J. Nicolls, Rapid enhancement of low-energy (<100\(\text{ eV}\)) ion flux in response to interplanetary shocks based on two Van Allen Probes case studies: implications for source regions and heating mechanisms. J. Geophys. Res. Space Phys. 121, 6430–6443 (2016). https://doi.org/10.1002/2016JA022808

    Article  ADS  Google Scholar 

  • C. Yue, J. Bortnik, L. Chen, Q. Ma, R.M. Thorne, G.D. Reeves, H.E. Spence, Transitional behavior of different energy protons based on Van Allen Probes observations. Geophys. Res. Lett. 44, 625–633 (2017a). https://doi.org/10.1002/2016GL071324

    Article  ADS  Google Scholar 

  • C. Yue et al., The characteristic pitch angle distributions of 1 eV to 600 keV protons near the equator based on Van Allen Probes observations. J. Geophys. Res. Space Phys. 122, 9464–9473 (2017b). https://doi.org/10.1002/2017JA024421

    Article  ADS  Google Scholar 

  • C. Yue, L. Chen, J. Bortnik, Q. Ma, R.M. Thorne, V. Angelopoulos, J. Li, X. An, C. Zhou, C. Kletzing, G.D. Reeves, H.E. Spence, The characteristic response of whistler mode waves to interplanetary shocks. J. Geophys. Res. Space Phys. 122, 10047–10057 (2017c). https://doi.org/10.1002/2017JA024574

    Article  ADS  Google Scholar 

  • C. Yue, J. Bortnik, W. Li, Q. Ma, M. Gkioulidou, G.D. Reeves et al., The composition of plasma inside geostationary orbit based on Van Allen Probes observations. J. Geophys. Res. Space Phys. 123, 6478–6493 (2018). https://doi.org/10.1029/2018JA025344

    Article  ADS  Google Scholar 

  • C. Yue, J. Bortnik, W. Li, Q. Ma, C.-P. Wang, R.M. Thorne et al., Oxygen ion dynamics in the Earth’s ring current: Van Allen Probes observations. J. Geophys. Res. Space Phys. 124, 7786–7798 (2019). https://doi.org/10.1029/2019JA026801

    Article  ADS  Google Scholar 

  • J. Zhang, I.G. Richardson, D.F. Webb, N. Gopalswamy, E. Huttunen, J.C. Kasper, N.V. Nitta, W. Poomvises, B.J. Thompson, C.C. Wu, S. Yashiro, Solar and interplanetary sources of major geomagnetic storms (\(\text{Dst}\leq - 100\) nT) during 1996–2005. J. Geophys. Res. Space Phys. 112(A10), A10102 (2007)

    ADS  Google Scholar 

  • J. Zhang, W. Poomvises, I.G. Richardson, Sizes and relative geoeffectiveness of interplanetary coronal mass ejections and the preceding shock sheaths during intense storms in 1996–2005. Geophys. Res. Lett. 35(2), L02109 (2008)

    ADS  Google Scholar 

  • X.Y. Zhang, Q.G. Zong, Y.F. Wang et al., ULF waves excited by negative/positive solar wind dynamic pressure impulses at geosynchronous orbit. J. Geophys. Res. Space Phys. 115(A10), A10221 (2010)

    ADS  Google Scholar 

  • H. Zhao, Q.G. Zong, Seasonal and diurnal variation of geomagnetic activity: Russell-McPherson effect during different IMF polarity and/or extreme solar wind conditions. J. Geophys. Res. 117, A11222 (2012). https://doi.org/10.1029/2012JA017845

    Article  ADS  Google Scholar 

  • X. Zhou, B.T. Tsurutani, Interplanetary shock triggering of nightside geomagnetic activity: substorms, pseudobreakups, and quiescent events. J. Geophys. Res. 106, 18,957–18,968 (2001). https://doi.org/10.1029/2000JA003028

    Article  ADS  Google Scholar 

  • X. Zhou, R.J. Strangeway, P.C. Anderson, D.G. Sibeck, B.T. Tsurutani, G. Haerendel, H.U. Frey, J.K. Arballo, Shock-aurora: FAST and DMSP observations. J. Geophys. Res. 108(A4), 8019 (2003). https://doi.org/10.1029/2002JA009701

    Article  Google Scholar 

  • Q.G. Zong, B. Wilken, Layered structure of energetic oxygen ions in the dayside magnetosheath. Geophys. Res. Lett. 25(22), 4121–4124 (1998)

    ADS  Google Scholar 

  • Q.-G. Zong et al., Energetic oxygen ion bursts in the distant magnetotail as a product of intense substorms: three case studies. J. Geophys. Res. 103(A9), 20339–20363 (1998). https://doi.org/10.1029/97JA01146

    Article  ADS  Google Scholar 

  • Q.-G. Zong, B. Wilken, S.Y. Fu, T.A. Fritz, A. Korth, N. Hasebe, D.J. Williams, Z.-Y. Pu, Ring current oxygen ions escaping into the magnetosheath. J. Geophys. Res. 106(A11), 25541–25556 (2001). https://doi.org/10.1029/2000JA000127

    Article  ADS  Google Scholar 

  • Q.-G. Zong, T.A. Fritz, Z.Y. Pu, S.Y. Fu, D.N. Baker, H. Zhang, A.T. Lui, I. Vogiatzis, K.-H. Glassmeier, A. Korth, P.W. Daly, H. Reme, A. Balogh, Cluster observations of earthward flowing plasmoid in the tail. Geophys. Res. Lett. 31, L18803 (2004). https://doi.org/10.1029/2004GL020,692

    Article  ADS  Google Scholar 

  • Q.G. Zong, Y.F. Wang, X.Z. Zhou et al., Energetic electrons response to ULF waves induced by interplanetary shocks in the outer radiation belt. J. Geophys. Res. 2009, 114, 2009JA014393 (2009)

    Google Scholar 

  • Q.G. Zong, Y.F. Wang, H. Zhang et al., Fast acceleration of inner magnetospheric hydrogen and oxygen ions by shock induced ULF waves. J. Geophys. Res. Space Phys. 2012, 117(A11) (2012)

    Google Scholar 

  • Q. Zong, Y. Hao, H. Zou, S. Fu, X. Zhou, J. Ren, L. Wang, C. Yuan, Z. Liu, X. Jia, L. Quan, Radial propagation of magnetospheric substorm-injected energetic electrons observed using a BD-IES instrument and Van Allen Probes. Sci. China Earth Sci. 59(7), 1508–1516 (2016)

    ADS  Google Scholar 

  • Q. Zong, R. Rankin, X. Zhou, The interaction of ultra- low- frequency pc3-5 waves with charged particles in Earth’s magnetosphere. Rev. Mod. Plasma Phys. 1(1), 10 (2017a)

    ADS  Google Scholar 

  • Q.G. Zong, Y.F. Wang, J. Ren et al., Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves. Earth Planet. Phys. 1(1), 2–12 (2017b)

    ADS  Google Scholar 

  • Q. Zong, Y. Wang, H. Zou, L. Wang, R. Rankin, X. Zhang, New magnetospheric substorm injection monitor: image electron spectrometer on board a Chinese navigation IGSO satellite. Space Weather 16, 121–125 (2018). https://doi.org/10.1002/2017SW001708

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The study was supported by research grant of NSFC Grant Numbers: 41731068, 41904145, 41421003, 41974191, 41627805 and China National Space Administration project D020301 and D020303. We are delighted to acknowledge to Cluster, Double Star, Van Allan Probes, THEMIS and MMS mission for providing the most amazing observations and data sets. The important and fruitful scientific collaborations that we enjoyed are with our talented students Y.X. Hao, Y. Liu, Z.Y. Liu, J. Ren, X.R. Chen, L. Li, X.H. Ma and Y.F. Zhu of Peking University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Q.-G. Zong or S.-Y. Fu.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, QG., Yue, C. & Fu, SY. Shock Induced Strong Substorms and Super Substorms: Preconditions and Associated Oxygen Ion Dynamics. Space Sci Rev 217, 33 (2021). https://doi.org/10.1007/s11214-021-00806-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-021-00806-x

Keywords

Navigation