Skip to main content
Log in

On the Distribution and Variation of Radioactive Heat Producing Elements Within Meteorites, the Earth, and Planets

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The heat production budget of a planet exerts a first order control on its thermal evolution, tectonics, and likelihood for habitability. However, our knowledge of heat producing element concentrations for silicate-metal bodies in the solar system—including Earth—is limited. Here we review the chronicle of heat producing elements (HPEs) in the solar system, from the interstellar medium, to their incorporation in the protoplanetary disk and accreting planetesimals, to later collisional or atmospheric-erosion modifications. We summarise the state of knowledge of the HPEs in terrestrial planets and meteorites, and current Earth models from emerging constraints, and assess the effect variations may have on the thermal and tectonic history of terrestrial planets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • M. Agostini, K. Altenmüller, S. Appel, V. Atroshchenko, Z. Bagdasarian, D. Basilico, G. Bellini, J. Benziger, D. Bick, G. Bonfini, D. Bravo et al., Comprehensive geoneutrino analysis with Borexino. arXiv preprint (2019). arXiv:1909.02257

  • F. Albarede, Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461(7268), 1227 (2009)

    ADS  Google Scholar 

  • M. Asplund, N. Grevesse, A.J. Sauval, P. Scott, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009)

    ADS  Google Scholar 

  • J.A. Barrat, B. Zanda, F. Moynier, C. Bollinger, C. Liorzou, G. Bayon, Geochemistry of CI chondrites: major and trace elements, and Cu and Zn isotopes. Geochim. Cosmochim. Acta 83, 79–92 (2012)

    ADS  Google Scholar 

  • I. Bartos, S. Marka, A nearby neutron-star merger explains the actinide abundances in the early Solar System. Nature 569(7754), 85–88 (2019)

    ADS  Google Scholar 

  • F. Birch, Speculations on the Earth’s thermal history. Geol. Soc. Am. Bull. 76(2), 133–154 (1965)

    ADS  Google Scholar 

  • M. Bizzarro, D. Ulfbeck, A. Trinquier, K. Thrane, J.N. Connelly, B.S. Meyer, Evidence for a late supernova injection of 60Fe into the protoplanetary disk. Science 316(5828), 1178–1181 (2007)

    ADS  Google Scholar 

  • I. Blanchard, J. Siebert, S. Borensztajn, J. Badro, The solubility of heat-producing elements in Earth’s core. Geochem. Perspect. Lett. 5, 1–5 (2017). https://doi.org/10.7185/geochemlet.1737.

    Article  Google Scholar 

  • J. Blichert-Toft, B. Zanda, D.S. Ebel, F. Albarède, The solar system primordial lead. Earth Planet. Sci. Lett. 300(1–2), 152–163 (2010)

    ADS  Google Scholar 

  • M. Boyet, R.W. Carlson, 142Nd evidence for early (> 4.53 Ga) global differentiation of the silicate Earth. Science 309(5734), 576–581 (2005)

    ADS  Google Scholar 

  • G.A. Brennecka, S. Weyer, M. Wadhwa, P.E. Janney, J. Zipfel, A.D. Anbar, 238U/235U variations in meteorites: extant 247Cm and implications for Pb-Pb dating. Science 327(5964), 449–451 (2010)

    ADS  Google Scholar 

  • C. Burkhardt, N. Dauphas, U. Hans, B. Bourdon, T. Kleine, Elemental and isotopic variability in solar system materials by mixing and processing of primordial disk reservoirs. Geochim. Cosmochim. Acta 261, 145–170 (2019)

    ADS  Google Scholar 

  • S.L. Butler, W.R. Peltier, Thermal evolution of Earth: models with time-dependent layering of mantle convection which satisfy the Urey ratio constraint. J. Geophys. Res., Solid Earth 107(B6), ESE–3 (2002)

    Google Scholar 

  • I.H. Campbell, H.S.C. O’Neill, Evidence against a chondritic Earth. Nature 483(7391), 553 (2012)

    ADS  Google Scholar 

  • R.M. Canup, Accretion of the Earth. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 366(1883), 4061–4075 (2008)

    ADS  Google Scholar 

  • R.W. Carlson, R. Brasser, Q.Z. Yin, M. Fischer-Gödde, L. Qin, Feedstocks of the terrestrial planets. Space Sci. Rev. 214(8), 121 (2018)

    ADS  Google Scholar 

  • R. Cayrel, V. Hill, T.C. Beers, B. Barbuy, M. Spite, F. Spite, B. Plez, J. Andersen, P. Bonifacio, P. Francois, P. Molaro, Measurement of stellar age from uranium decay. Nature 409(6821), 691 (2001)

    ADS  Google Scholar 

  • U.R. Christensen, Thermal evolution models for the Earth. J. Geophys. Res., Solid Earth 90(B4), 2995–3007 (1985)

    Google Scholar 

  • P.L. Clay, R. Burgess, H. Busemann, L. Ruzié-Hamilton, B. Joachim, J.M. Day, C.J. Ballentine, Halogens in chondritic meteorites and terrestrial accretion. Nature 551(7682), 614 (2017)

    ADS  Google Scholar 

  • C.P. Conrad, B.H. Hager, Mantle convection with strong subduction zones. Geophys. J. Int. 144(2), 271–288 (2001)

    ADS  Google Scholar 

  • A. Corgne, S. Keshav, Y. Fei, W.F. McDonough, How much potassium is in the Earth’s core? New insights from partitioning experiments. Earth Planet. Sci. Lett. 256(3–4), 567–576 (2007)

    ADS  Google Scholar 

  • N. Dauphas, The isotopic nature of the Earth’s accreting material through time. Nature 541(7638), 521 (2017)

    ADS  Google Scholar 

  • J.H. Davies, D.R. Davies, Earth’s surface heat flux. Solid Earth 1, 5–24 (2010)

    ADS  Google Scholar 

  • A.M. Davis (ed.), Meteorites, Comets, and Planets: Treatise on Geochemistry (Vol. 1) (Elsevier, Amsterdam, 2005)

    Google Scholar 

  • S.T. Dye, Geoneutrinos and the radioactive power of the Earth. Rev. Geophys. 50(3), 3007 (2012)

    ADS  Google Scholar 

  • M. Ebihara, S. Sekimoto, Halogen contents in meteorites (1) carbonaceous chondrites, in 50th Lunar and Planetary Science Conference. LPI Contribution, vol. 2132 (2019), p. 2338

    Google Scholar 

  • T.M. Esat, Comment on “Potassium isotope cosmochemistry: genetic implications of volatile element depletion” by Munir Humayun and RN Clayton. Geochim. Cosmochim. Acta 60(19), 3755–3758 (1996)

    ADS  Google Scholar 

  • E.A. Frank, B.S. Meyer, S.J. Mojzsis, A radiogenic heating evolution model for cosmochemically Earth-like exoplanets. Icarus 243, 274–286 (2014)

    ADS  Google Scholar 

  • A. Gando, Y. Gando, K. Ichimura, H. Ikeda, K. Inoue, Y. Kibe, Y. Kishimoto, M. Koga, Y. Minekawa, T. Mitsui, T. Morikawa, Partial radiogenic heat model for Earth revealed by geoneutrino measurements. Nat. Geosci. 4(9), 647 (2011)

    ADS  Google Scholar 

  • N. Grevesse, Abundances of the elements in the Sun, in Frontiers of Astronomy and Astrophysics, ed. by R. Pallavicini (Ital. Astron. Soc., Florence, 1984), pp. 71–82

    Google Scholar 

  • N. Grevesse, P. Scott, M. Asplund, A.J. Sauval, The elemental composition of the Sun-III. The heavy elements Cu to Th. Astron. Astrophys. 573, A27 (2015)

    ADS  Google Scholar 

  • L. Grossman, Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta 36(5), 597–619 (1972)

    ADS  Google Scholar 

  • L. Grossman, J.W. Larimer, Early chemical history of the solar system. Rev. Geophys. 12(1), 71–101 (1974)

    ADS  Google Scholar 

  • R.H. Hewins, M. Bourot-Denise, B. Zanda, H. Leroux, J.A. Barrat, M. Humayun, C. Göpel, R.C. Greenwood, I.A. Franchi, S. Pont, J.P. Lorand, The Paris meteorite, the least altered CM chondrite so far. Geochim. Cosmochim. Acta 124, 190–222 (2014)

    ADS  Google Scholar 

  • R.C. Hin, C.D. Coath, P.J. Carter, F. Nimmo, Y.J. Lai, P.A.P. von Strandmann, M. Willbold, Z.M. Leinhardt, M.J. Walter, T. Elliott, Magnesium isotope evidence that accretional vapour loss shapes planetary compositions. Nature 549(7673), 511–515 (2017)

    ADS  Google Scholar 

  • J.H. Hoffman, R.R. Hodges, T.M. Donahue, M.B. McElroy, Composition of the Venus lower atmosphere from the Pioneer Venus mass spectrometer. J. Geophys. Res. 85, 7882–7890 (1980)

    ADS  Google Scholar 

  • T. Höink, A. Lenardic, A.M. Jellinek, Earth’s thermal evolution with multiple convection modes: a Monte-Carlo approach. Phys. Earth Planet. Inter. 221, 22–26 (2013)

    ADS  Google Scholar 

  • J.C. Holst, M.B. Olsen, C. Paton, K. Nagashima, M. Schiller, D. Wielandt, K.K. Larsen, J.N. Connelly, J.K. Jørgensen, A.N. Krot, Å. Nordlund, 182Hf–182W age dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System. Proc. Natl. Acad. Sci. 110(22), 8819–8823 (2013)

    ADS  Google Scholar 

  • Y. Huang, V. Chubakov, F. Mantovani, R.L. Rudnick, W.F. McDonough, A reference Earth model for the heat-producing elements and associated geoneutrino flux. Geochem. Geophys. Geosyst. 14(6), 2003–2029 (2013)

    ADS  Google Scholar 

  • M. Humayun, R.N. Clayton, Potassium isotope cosmochemistry: genetic implications of volatile element depletion. Geochim. Cosmochim. Acta 59(10), 2131–2148 (1995)

    ADS  Google Scholar 

  • M.G. Jackson, A.M. Jellinek, Major and trace element composition of the high 3He/4He mantle: implications for the composition of a nonchonditic Earth. Geochem. Geophys. Geosyst. 14(8), 2954–2976 (2013)

    ADS  Google Scholar 

  • C. Jaupart, S. Labrosse, J.C. Mareschal, 7.06 - Temperatures, heat and energy in the mantle of the Earth, in Treatise on Geophysics, vol. 7 (2007), pp. 223–270

    Google Scholar 

  • M. Javoy, The integral enstatite chondrite model of the Earth. Geophys. Res. Lett. 22(16), 2219–2222 (1995)

    ADS  Google Scholar 

  • A.M. Jellinek, M.G. Jackson, Connections between the bulk composition, geodynamics and habitability of Earth. Nat. Geosci. 8(8), 587 (2015)

    ADS  Google Scholar 

  • C.P. Johnstone, M.L. Khodachenko, T. Lüftinger, K.G. Kislyakova, H. Lammer, M. Güdel, Extreme hydrodynamic losses of Earth-like atmospheres in the habitable zones of very active stars. Astron. Astrophys. 624, L10 (2019)

    ADS  Google Scholar 

  • D. Kasen, B. Metzger, J. Barnes, E. Quataert, E. Ramirez-Ruiz, Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551(7678), 80 (2017)

    ADS  Google Scholar 

  • W.M. Kaula, Venus reconsidered. Science 270(5241), 1460–1464 (1995)

    ADS  Google Scholar 

  • W.M. Kaula, Constraints on Venus evolution from radiogenic argon. Icarus 139(1), 32–39 (1999)

    ADS  Google Scholar 

  • L.H. Kellogg, B.H. Hager, R.D. Van Der Hilst, Compositional stratification in the deep mantle. Science 283(5409), 1881–1884 (1999)

    ADS  Google Scholar 

  • J. Korenaga, Energetics of mantle convection and the fate of fossil heat. Geophys. Res. Lett. 30(8), 1437 (2003)

    ADS  Google Scholar 

  • J. Korenaga, Archean Geodynamics and the Thermal Evolution of Earth. Geophysical Monograph, vol. 164 (Am. Geophys. Union, Washington, 2006), p. 7

    Google Scholar 

  • M.E. Kreutzberger, M.J. Drake, J.H. Jones, Origin of the Earth’s Moon: constraints from alkali volatile trace elements. Geochim. Cosmochim. Acta 50(1), 91–98 (1986)

    ADS  Google Scholar 

  • S. Labrosse, C. Jaupart, Thermal evolution of the Earth: secular changes and fluctuations of plate characteristics. Earth Planet. Sci. Lett. 260(3–4), 465–481 (2007)

    ADS  Google Scholar 

  • S. Labrosse, J.W. Hernlund, N. Coltice, A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450(7171), 866–869 (2007)

    ADS  Google Scholar 

  • H. Lammer, M. Leitzinger, M. Scherf, P. Odert, C. Burger, D. Kubyshkina, C. Johnstone, T. Maindl, C.M. Schäfer, M. Güdel, N. Tosi, Measured atmospheric 36Ar/38Ar, 20Ne/22Ne, 36Ar/22Ne noble gas isotope and bulk K/U ratios constrain the early evolution of Venus and Earth. Icarus 339, 113551 (2019)

    Google Scholar 

  • J.W. Larimer, Chemical fractionations in meteorites—I. Condensation of the elements. Geochim. Cosmochim. Acta 31(8), 1215–1238 (1967)

    ADS  Google Scholar 

  • S.W. Lehner, W.F. McDonough, P. Németh, EH3 matrix mineralogy with major and trace element composition compared to chondrules. Meteorit. Planet. Sci. 49(12), 2219–2240 (2014)

    ADS  Google Scholar 

  • A. Lenardic, Continental Growth and the Archean Paradox. Geophysical Monograph, vol. 164 (Am. Geophys. Union, Washington, 2006), p. 33

    Google Scholar 

  • A. Lenardic, J.W. Crowley, On the notion of well-defined tectonic regimes for terrestrial planets in this solar system and others. Astrophys. J. 755(2), 132 (2012)

    ADS  Google Scholar 

  • A. Lenardic, C.M. Cooper, L. Moresi, A note on continents and the Earth’s Urey ratio. Phys. Earth Planet. Inter. 188(1–2), 127–130 (2011)

    ADS  Google Scholar 

  • A. Lenardic, A.M. Jellinek, B. Foley, C. O’Neill, W.B. Moore, Climate-tectonic coupling: variations in the mean, variations about the mean, and variations in mode. J. Geophys. Res., Planets 121(10), 1831–1864 (2016)

    ADS  Google Scholar 

  • A. Lenardic, M. Weller, T. Höink, J. Seales, Toward a boot strap hypothesis of plate tectonics: feedbacks between plates, the asthenosphere, and the wavelength of mantle convection. Phys. Earth Planet. Inter. 296, 106299 (2019)

    Google Scholar 

  • K. Lodders, Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591(2), 1220 (2003)

    ADS  Google Scholar 

  • K. Lodders, B. Fegley Jr., An oxygen isotope model for the composition of Mars. Icarus 126(2), 373–394 (1997)

    ADS  Google Scholar 

  • K. Lodders, B. Fegley, Condensation chemistry of circumstellar grains, in Symposium-International Astronomical Union, vol. 191 (Cambridge University Press, Cambridge, 1999), pp. 279–290

    Google Scholar 

  • K. Lodders, H. Palme, H.P. Gail, 4.4 Abundances of the elements in the Solar System, in Solar System (Springer, Berlin, 2009), pp. 712–770

    Google Scholar 

  • H.C. Lord III., Molecular equilibria and condensation in a solar nebula and cool stellar atmospheres. Icarus 4(3), 279–288 (1965)

    ADS  Google Scholar 

  • M. Lugaro, A. Heger, D. Osrin, S. Goriely, K. Zuber, A.I. Karakas, B.K. Gibson, C.L. Doherty, J.C. Lattanzio, U. Ott, Stellar origin of the 182Hf cosmochronometer and the presolar history of solar system matter. Science 345(6197), 650–653 (2014)

    ADS  Google Scholar 

  • K. Makide, K. Nagashima, A.N. Krot, G.R. Huss, F.J. Ciesla, E. Hellebrand, E. Gaidos, L. Yang, Heterogeneous distribution of 26Al at the birth of the solar system. Astrophys. J. Lett. 733, L31 (2011)

    ADS  Google Scholar 

  • F.M. McCubbin, M.A. Riner, K.E. Vander Kaaden, L.K. Burkemper, Is Mercury a volatile-rich planet? Geophys. Res. Lett. 39(9), L09202 (2012)

    ADS  Google Scholar 

  • W.F. McDonough, Geoneutrino detection, in Encyclopedia of Geochemistry, ed. by W.M. White (Springer, Berlin, 2016). https://doi.org/10.1007/978-3-319-39193-9_213-1

    Chapter  Google Scholar 

  • S.M. McLennan, Geochemistry of sedimentary processes on Mars. Sediment. Geol. Mars 102, 119–138 (2012)

    Google Scholar 

  • A.K. McNamara, P.E. Van Keken, Cooling of the Earth: a parameterized convection study of whole versus layered models. Geochem. Geophys. Geosyst. 1(11), 1027 (2000)

    ADS  Google Scholar 

  • W.B. Moore, Heat transport in a convecting layer heated from within and below. J. Geophys. Res. Solid Earth 113(B11), B11407 (2008)

    ADS  Google Scholar 

  • W.B. Moore, A.A.G. Webb, Heat-pipe Earth. Nature 501(7468), 501 (2013)

    ADS  Google Scholar 

  • A. Morbidelli, B. Bitsch, A. Crida, M. Gounelle, T. Guillot, S. Jacobson, A. Johansen, M. Lambrechts, E. Lega, Fossilized condensation lines in the Solar System protoplanetary disk. Icarus 267, 368–376 (2016)

    ADS  Google Scholar 

  • L. Moresi, V. Solomatov, Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophys. J. Int. 133(3), 669–682 (1998)

    ADS  Google Scholar 

  • E. Mulyukova, D. Bercovici, Collapse of passive margins by lithospheric damage and plunging grain size. Earth Planet. Sci. Lett. 484, 341–352 (2018)

    ADS  Google Scholar 

  • S.G. Nielsen, M. Auro, K. Righter, D. Davis, J. Prytulak, F. Wu, J.D. Owens, Nucleosynthetic vanadium isotope heterogeneity of the early solar system recorded in chondritic meteorites. Earth Planet. Sci. Lett. 505, 131–140 (2019)

    ADS  Google Scholar 

  • F. Nimmo, G.D. Price, J. Brodholt, D. Gubbins, The influence of potassium on core and geodynamo evolution. Geophys. J. Int. 156(2), 363–376 (2004)

    ADS  Google Scholar 

  • L. Noack, M. Godolt, P. von Paris, A.C. Plesa, B. Stracke, D. Breuer, H. Rauer, Can the interior structure influence the habitability of a rocky planet? Planet. Space Sci. 98, 14–29 (2014)

    ADS  Google Scholar 

  • C.A. Norris, B.J. Wood, Earth’s volatile contents established by melting and vaporization. Nature 549(7673), 507 (2017)

    ADS  Google Scholar 

  • H.S.C. O’Neill, The origin of the Moon and the early history of the Earth—A chemical model. Part 1: the Moon. Geochim. Cosmochim. Acta 55(4), 1135–1157 (1991a)

    ADS  MathSciNet  Google Scholar 

  • H.S.C. O’Neill, The origin of the Moon and the early history of the Earth—A chemical model. Part 2: the Earth. Geochim. Cosmochim. Acta 55(4), 1159–1172 (1991b)

    ADS  MathSciNet  Google Scholar 

  • H.S.C. O’Neill, Heat producing elements (HPEs), in Encyclopedia of Geochemistry, ed. by W.M. White (Springer, Berlin, 2016). https://doi.org/10.1007/978-3-319-39193-9_265-1

    Chapter  Google Scholar 

  • C. O’Neill, V. Debaille, The evolution of Hadean–Eoarchaean geodynamics. Earth Planet. Sci. Lett. 406, 49–58 (2014)

    ADS  Google Scholar 

  • H.S.C. O’Neill, F.E. Jenner, The global pattern of trace-element distributions in ocean floor basalts. Nature 491(7426), 698 (2012)

    ADS  Google Scholar 

  • H.S.C. O’Neill, H. Palme, Collisional erosion and the non-chondritic composition of the terrestrial planets. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 366(1883), 4205–4238 (2008)

    ADS  Google Scholar 

  • C. O’Neill, A. Lenardic, L. Moresi, T.H. Torsvik, C.T. Lee, Episodic precambrian subduction. Earth Planet. Sci. Lett. 262(3–4), 552–562 (2007)

    ADS  Google Scholar 

  • C. O’Neill, A. Lenardic, T. Höink, N. Coltice, Mantle convection and outgassing on terrestrial planets, in Comparative Climatology of Terrestrial Planets (2014), pp. 473–486

    Google Scholar 

  • C. O’Neill, A. Lenardic, M. Weller, L. Moresi, S. Quenette, S. Zhang, A window for plate tectonics in terrestrial planet evolution? Phys. Earth Planet. Inter. 255, 80–92 (2016)

    ADS  Google Scholar 

  • C. O’Neill, S. Turner, T. Rushmer, The inception of plate tectonics: a record of failure. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 376(2132), 20170414 (2018)

    ADS  Google Scholar 

  • H. Palme, H.S.C. O’Neill, Cosmochemical estimates of mantle composition, in Treatise on Geochemistry, Vol. 2: The Mantle and Core, ed. by H.D. Holland, K.K. Turekian (2014)

    Google Scholar 

  • P.N. Peplowski, L.G. Evans, S.A. Hauck, T.J. McCoy, W.V. Boynton, J.J. Gillis-Davis, D.S. Ebel, J.O. Goldsten, D.K. Hamara, D.J. Lawrence, R.L. McNutt, Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science 333(6051), 1850–1852 (2011)

    ADS  Google Scholar 

  • H. Rizo et al., The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks. Nature 491, 96–100 (2013)

    ADS  Google Scholar 

  • H. Rizo, R.J. Walker, R.W. Carlson, M.F. Horan, S. Mukhopadhyay, V. Manthos, D. Francis, M.G. Jackson, Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 352(6287), 809–812 (2016)

    ADS  Google Scholar 

  • A.E. Rubin, H. Huber, J.T. Wasson, Possible impact-induced refractory-lithophile fractionations in EL chondrites. Geochim. Cosmochim. Acta 73(5), 1523–1537 (2009)

    ADS  Google Scholar 

  • T. Ruedas, Radioactive heat production of six geologically important nuclides. Geochem. Geophys. Geosyst. 18(9), 3530–3541 (2017)

    ADS  Google Scholar 

  • L. Schaefer, B. Fegley Jr., Chemistry of atmospheres formed during accretion of the Earth and other terrestrial planets. Icarus 208(1), 438–448 (2010)

    ADS  Google Scholar 

  • M. Scherff, H. Lammer, M. Leitzinger, P. Odert, C. Burger, D. Kubyshkina, C. Johnstone, T. Maindl, M. Güdel, N. Tosie, E. Marcq, Atmospheric noble gas isotope and bulk K/U ratios as a constraint on the origin and early evolution of Venus and Earth (2019)

  • M. Schiller, J.N. Connelly, A.C. Glad, T. Mikouchi, M. Bizzarro, Early accretion of protoplanets inferred from a reduced inner solar system 26Al inventory. Earth Planet. Sci. Lett. 420, 45–54 (2015)

    ADS  Google Scholar 

  • M. Schiller, M. Bizzarro, V.A. Fernandes, Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature 555(7697), 507 (2018)

    ADS  Google Scholar 

  • G. Schubert, D.L. Turcotte, P. Olson, Mantle Convection in the Earth and Planets (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  • G.H. Shaw, Core formation in terrestrial planets. Phys. Earth Planet. Inter. 20(1), 42–47 (1979)

    ADS  Google Scholar 

  • J. Siebert, P.A. Sossi, I. Blanchard, B. Mahan, J. Badro, F. Moynier, Chondritic Mn/Na ratio and limited post-nebular volatile loss of the Earth. Earth Planet. Sci. Lett. 485, 130–139 (2018)

    ADS  Google Scholar 

  • P.G. Silver, M.D. Behn, Intermittent plate tectonics? Science 319(5859), 85–88 (2008)

    ADS  Google Scholar 

  • S.C. Solomon, R.L. McNutt Jr., R.E. Gold, M.H. Acuña, D.N. Baker, W.V. Boynton, C.R. Chapman, A.F. Cheng, G. Gloeckler, J.W. Head Iii, S.M. Krimigis, The MESSENGER mission to Mercury: scientific objectives and implementation. Planet. Space Sci. 49(14–15), 1445–1465 (2001)

    ADS  Google Scholar 

  • P.A. Sossi, S. Klemme, H.S.C. O’Neill, J. Berndt, F. Moynier, Evaporation of moderately volatile elements from silicate melts: experiments and theory. Geochim. Cosmochim. Acta 260, 204–231 (2019)

    ADS  Google Scholar 

  • C. Stein, J. Schmalzl, U. Hansen, The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection. Phys. Earth Planet. Inter. 142(3–4), 225–255 (2004)

    ADS  Google Scholar 

  • D.J. Stevenson, Models of the Earth’s core. Science 214(4521), 611–619 (1981)

    ADS  Google Scholar 

  • S.S. Sun, W.F. McDonough, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. (Lond.) Spec. Publ. 42(1), 313–345 (1989)

    ADS  Google Scholar 

  • Y.A. Surkov, F.F. Kirnozov, V.N. Glazov, A.G. Dunchenko, L.P. Tatsy, O.P. Sobornov, Uranium, thorium, and potassium in the Venusian rocks at the landing sites of Vega 1 and 2. J. Geophys. Res., Solid Earth 92(B4), E537–E540 (1987)

    Google Scholar 

  • B.M. Tinsley, Stellar lifetimes and abundance ratios in chemical evolution. Astrophys. J. 229, 1046–1056 (1979). https://doi.org/10.1086/157039

    Article  ADS  Google Scholar 

  • D.C. Tozer, Heat transfer and convection currents. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 258(1088), 252–271 (1965)

    ADS  Google Scholar 

  • R. Trappitsch, P. Boehnke, T. Stephan, M. Telus, M.R. Savina, O. Pardo, A.M. Davis, N. Dauphas, M.J. Pellin, G.R. Huss, New constraints on the abundance of 60Fe in the Early Solar System. Astrophys. J. Lett. 857(2), L15 (2018)

    ADS  Google Scholar 

  • D.L. Turcotte, G. Schubert, Geodynamics (Cambridge University Press, Cambridge, 2002), pp. 23–48

    Google Scholar 

  • H.C. Urey, The abundances of the elements. Phys. Rev. 88(2), 248 (1952)

    ADS  Google Scholar 

  • J. van Summeren, C.P. Conrad, C. Lithgow-Bertelloni, The importance of slab pull and a global asthenosphere to plate motions. Geochem. Geophys. Geosyst. 13(2), Q0AK03 (2012)

    Google Scholar 

  • L. Wang, J.J. Goodman, Wind-driven accretion in transitional protostellar disks. Astrophys. J. 835(1), 59 (2017)

    ADS  Google Scholar 

  • K. Wang, S.B. Jacobsen, Potassium isotopic evidence for a high-energy giant impact origin of the Moon. Nature 538(7626), 487 (2016)

    ADS  Google Scholar 

  • H. Wänke, G. Dreibus, Chemical composition and accretion history of terrestrial planets. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 325(1587), 545–557 (1988)

    ADS  Google Scholar 

  • H. Wänke, G. Dreibus, Chemistry and accretion history of Mars. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 349(1690), 285–293 (1994)

    ADS  Google Scholar 

  • H. Wänke, G. Dreibus, E. Jagoutz, Mantle chemistry and accretion history of the Earth, in Archaean Geochemistry (Springer, Berlin, 1984), pp. 1–24

    Google Scholar 

  • J.T. Wasson, G.W. Kallemeyn, Compositions of chondrites. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 325(1587), 535–544 (1988)

    ADS  Google Scholar 

  • M.B. Weller, A. Lenardic, On the evolution of terrestrial planets: bi-stability, stochastic effects, and the non-uniqueness of tectonic states. Geosci. Front. 9(1), 91–102 (2018)

    Google Scholar 

  • S.A. Wipperfurth, M. Guo, O. Šrámek, W.F. McDonough, Earth’s chondritic Th/U: negligible fractionation during accretion, core formation, and crust–mantle differentiation. Earth Planet. Sci. Lett. 498, 196–202 (2018)

    ADS  Google Scholar 

  • A. Wohlers, B.J. Wood, A Mercury-like component of early Earth yields uranium in the core and high mantle 142 Nd. Nature 520(7547), 337 (2015)

    ADS  Google Scholar 

  • B.J. Wood, D.J. Smythe, T. Harrison, The condensation temperatures of the elements: a reappraisal. Am. Mineral. 104(6), 844–856 (2019)

    ADS  Google Scholar 

  • E.D. Young, Assessing the implications of K isotope cosmochemistry for evaporation in the preplanetary solar nebula. Earth Planet. Sci. Lett. 183, 321–333 (2000)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. O’Neill.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reading Terrestrial Planet Evolution in Isotopes and Element Measurements

Edited by Helmut Lammer, Bernard Marty, Aubrey L. Zerkle, Michel Blanc, Hugh O’Neill and Thorsten Kleine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Neill, C., O’Neill, H.S.C. & Jellinek, A.M. On the Distribution and Variation of Radioactive Heat Producing Elements Within Meteorites, the Earth, and Planets. Space Sci Rev 216, 37 (2020). https://doi.org/10.1007/s11214-020-00656-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00656-z

Keywords

Navigation