Skip to main content
Log in

Past, Present and Future of Active Radio Frequency Experiments in Space

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Active ionospheric experiments using high-power, high-frequency transmitters, “heaters”, to study plasma processes in the ionosphere and magnetosphere continue to provide new insights into understanding plasma and geophysical proceses. This review describes the heating facilities, past and present, and discusses scientific results from these facilities and associated space missions. Phenomena that have been observed with these facilities are reviewed along with theoretical explanations that have been proposed or are commonly accepted. Gaps or uncertainties in understanding of heating-initiated phenomena are discussed together with proposed science questions to be addressed in the future. Suggestions for improvements and additions to existing facilities are presented including important satellite missions which are necessary to answer the outstanding questions in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45

Similar content being viewed by others

Abbreviations

AA:

anomalous absorption

AGW:

acoustic gravity wave

AKR:

auroral kilometric radiation

API:

artificial periodic irregularity

ASE:

artificially stimulated emissions

BF layer:

the region of scattering from the bottom side F region

BUM:

broad upshifted maximum

BUS:

broad upshifted structure

BSS:

broad symmetrical structure

CADI:

Canadian Advanced Digital Ionosonde

CNA:

cosmic noise absorption

DL:

descending layer

DM:

downshifted maximum

DMSP:

Defense Meteorological Satellite Program

DP:

downshifted peak

DSX:

Demonstration and Science Experiments satellite

DVH:

descending virtual height

DW:

diagnostic wave

EISCAT:

European Incoherent SCATter Scientific Association

EMIC:

electromagnetic ion cyclotron wave

ERP:

effective radiated power

FAC:

field-aligned current

FAI:

field-aligned irregularity

HAARP:

High Frequency Active Auroral Research Program

HIPAS:

HIgh Power Auroral Stimulation observatory

IAPD:

Ion Acoustic Parametric Decay instability

IAR:

ionospheric Alfvén resonator

IDM:

intermediate downshifted maximum

IDV:

ionosphere disturbed volume

IFI:

ionospheric feedback instability

IRI:

Ionospheric Research Instrument

ISR:

incoherent scatter radar

LH:

lower hybrid

LSI:

large-scale irregularity

LT:

Langmuir turbulence

MI:

modulational instability

MUIR:

modular UHF ionospheric radar (at HAARP)

MSI:

medium-scale irregularity

MZ:

magnetic zenith

NC:

narrow continuum

NEIAL:

naturally enhanced ion acoustic line

OTHR:

over-the-horizon radar

OTSI:

oscillating two-stream instability

PDI:

parametric decay instability

PFISR:

Poker Flat incoherent scatter radar

PL:

plasma line

PMSE:

polar mesospheric summer echoes

PMWE:

polar mesospheric winter echoes

PPI:

ponderomotive parametric instability

PW:

pump wave

QPO:

quasi-periodic oscillation

SAPS:

subauroral polarization stream

SAID:

subauroral ion drift

SEE:

stimulated electromagnetic emission

SLT:

strong Langmuir turbulence

SSA:

striction self-action

SSI:

small-scale irregularity

SSSI:

supra-small-scale irregularities

SST:

super strong (Langmuir) turbulence

TEC:

total electron content

TID:

travelling ionospheric disturbance

TPI:

thermal parametric instability

TSFI:

thermal self-focusing instability

UH:

upper hybrid

UHR:

upper hybrid resonance

UWE:

upshifted wideband emission

VPM:

VLF and Particle Mapper satellite

WAILES:

wide-altitude extent ion line enhancements

WT:

weak turbulence

References

  • E.M. Allen, G.D. Thome, P.B. Rao, HF phased array observations of heater-induced spread-F. Radio Sci. 9(11), 905–916 (1974)

    ADS  Google Scholar 

  • E.S. Andreeva, V.L. Frolov, V.E. Kunitsyn, A.S. Kryukovskii, D.S. Lukin, M.O. Nazarenko, A.M. Padokhin, Radiotomography and HF ray tracing of the artificially disturbed ionosphere above the SURA heating facility. Radio Sci. 51(6), 638–644 (2016). https://doi.org/10.1002/2015RS005939

    Article  ADS  Google Scholar 

  • M. Ashrafi, M.J. Kosch, F. Honary, Heater-Induced altitude descent of the EISCAT UHF ion line enhancements: observations and modelling. Adv. Space Res. 38(11), 2645–2652 (2006)

    ADS  Google Scholar 

  • M. Ashrafi, M.J. Kosch, K. Kaila, B. Isham, Spatiotemporal evolution of radio wave pump-induced ionospheric phenomena near the fourth electron gyroharmonic. J. Geophys. Res. 112, A05314 (2007). https://doi.org/10.1029/2006JA011938

    Article  ADS  Google Scholar 

  • G. Atkinson, Auroral arcs: result of the interaction of a dynamic magnetosphere with the ionosphere. J. Geophys. Res. 75, 4746 (1970)

    ADS  Google Scholar 

  • H. Bahcivan, J.W. Cutler, J.C. Springmann, R. Doe, M.J. Nicolls, Magnetic aspect sensitivity of high-latitude E region irregularities measured by the RAX-2 CubeSat. J. Geophys. Res. 119(2), 1233–1249 (2014)

    Google Scholar 

  • V.A. Bailey, Interaction by resonance of radio waves. Nature 139, 68–69 (1937)

    Google Scholar 

  • N.V. Bakhmet’eva, V.V. Belikovich, L.M. Kagan, A.A. Ponyatov, A.V. Tolmacheva, M.C. Kelley, M.J. Nicolls, New results of studying the lower ionosphere by the method of resonance scattering of radio waves from artificial periodic inhomogeneities. Radiophys. Quantum Electron. 48(9), 673–685 (2005)

    ADS  Google Scholar 

  • R. Barr, VLF wave generation using VLF heating and the cubic nonlinearity of the ionosphere. Geophys. Res. Lett. 23, 2165 (1996). https://doi.org/10.1029/96GL02024

    Article  ADS  Google Scholar 

  • R. Barr, P. Stubbe, ELF and VLF wave generation by HF heating: a comparison of AM and CW techniques. J. Atmos. Terr. Phys. 59(18), 2265–2279 (1997)

    ADS  Google Scholar 

  • R. Barr, M.T. Rietveld, H. Kopka, P. Stubbe, E. Nielsen, Extra-low-frequency radiation from the polar electrojet antenna. Nature 317(6033), 155–157 (1985a)

    ADS  Google Scholar 

  • R. Barr, M.T. Rietveld, P. Stubbe, H. Kopka, The diffraction of VLF radio Waves by a patch of ionosphere illuminated by a powerful HF transmitter. J. Geophys. Res. 90(A3), 2861–2875 (1985b)

    ADS  Google Scholar 

  • R. Barr, P. Stubbe, M.T. Rietveld, H. Kopka, ELF and VLF signals radiated by the ‘Polar Electrojet Antenna’: experimental results. J. Geophys. Res. 91(A4), 4451–4459 (1986)

    ADS  Google Scholar 

  • R. Barr, M.T. Rietveld, P. Stubbe, H. Kopka, Ionospheric heater beam scanning: a realistic model of this mobile source of ELF/VLF radiation. Radio Sci. 23(3), 379–388 (1988)

    ADS  Google Scholar 

  • R. Barr, P. Stubbe, M.T. Rietveld, ELF wave generation in the ionosphere using pulse modulated HF heating: initial tests of a technique for increasing ELF wave generation efficiency. Ann. Geophys. 17, 759–769 (1999)

    ADS  Google Scholar 

  • A.F. Belenov, V.A. Bubnov, L.M. Erukhimov, V. Kiselev Yu, G.P. Komrakov, E.E. Mityakova, L.N. Rubtsov, V.P. Uryadov, V.L. Frolov, YuV. Chugunov, On parameters of artificial small-scale ionospheric irregularities. Radiophys. Quantum Electron. 20, 1240–1245 (1977)

    ADS  Google Scholar 

  • V.V. Belikovich, E.A. Benediktov, G.G. Getmantsev, L.M. Erukhimov, N.A. Zuikov, G.P. Komrakov, Yu.S. Korobkov, N.A. Mityakov, V.O. Rapoport, V.Yu. Trakhtengertz V.L. Frolov, New results of investigations of nonlinear phenomena in the ionosphere. Radiophys. Quantum Electron. 18(4), 377–383 (1975)

    ADS  Google Scholar 

  • V.V. Belikovich, L.M. Erukhimov, V.A. Zyuzin, S. Korobkov Yu, O.I. Maksimenko, A.M. Nasyrov, E.N. Sergeev, V.L. Frolov, P.B. Shavin, Times of development and relaxation of artificial small-scale irregularities. Radiophys. Quantum Electron. 31, 181–185 (1988)

    ADS  Google Scholar 

  • V.V. Belikovich, S.M. Grach, A.N. Karashtin, D.S. Kotik, Yu.V. Tokarev, The SURA facility: study of the atmosphere and space. Radiophys. Quantum Electron. 50(7), 497–526 (2007)

    ADS  Google Scholar 

  • P. Belyaev, S. Polyakov, V. Rappoport, V. Trakhtengerts, The ionospheric Alfvén resonator. J. Atmos. Terr. Phys. 52, 781 (1990)

    ADS  Google Scholar 

  • I.V. Berezin, G.N. Boiko, V.M. Volkov, V.A. Zyuzin, G.P. Komrakov, A.M. Leonov, A.N. Maresov, V.A. Ryzhov, V.A. Solynin, Peculiarities of the development and saturation of artificial ionospheric turbulence during a high-power disturbing transitions. Radiophys. Quantum Electron. 30(6), 522–529 (1987)

    ADS  Google Scholar 

  • P.A. Bernhardt, C.A. Selcher, R.H. Lehmberg et al., Stimulated Brillouin scatter in magnetized ionospheric plasma. Phys. Rev. Lett. 104, 165004 (2010). https://doi.org/10.1103/PhysRevLett.104.165004

    Article  ADS  Google Scholar 

  • P.A. Bernhardt, C.A. Selcher, S. Kowtha, Electron and ion Bernstein waves excited in the ionosphere by high power EM waves at the second harmonic of the electron cyclotron frequency. Geophys. Res. Lett. 38, L19107 (2011). https://doi.org/10.1029/2011GL049390

    Article  ADS  Google Scholar 

  • P. Bernhardt, C. Siefring, S. Briczinski, R. Michell, Large ionospheric disturbances produced by the HAARP HF facility. Radio Sci. 51, 1081–1093 (2016). https://doi.org/10.1002/2015RS005883

    Article  ADS  Google Scholar 

  • N.F. Blagoveshchenskaya, V.A. Kornienko, T.D. Borisova, B. Thidé, M.J. Kosch, M.T. Rietveld, E.V. Mishin, R.Y. Luk’yanova, O.A. Troschichev, Ionospheric HF pump wave triggering of local auroral activation. J. Geophys. Res. 106(A12), 29071–29090 (2001)

    ADS  Google Scholar 

  • N.F. Blagoveshchenskaya, V.A. Kornienko, T.D. Borisova, M.T. Rietveld, T. Bösinger, B. Thidé, T.B. Leyser, A. Brekke, Heater-induced phenomena in a coupled ionosphere–magnetosphere system. Adv. Space Res. 38, 2495–2502 (2006). https://doi.org/10.1016/j.asr.2004.12.047

    Article  ADS  Google Scholar 

  • N.F. Blagoveshchenskaya, T.D. Borisova, V.A. Kornienko, M.T. Rietveld, T.K. Yeoman, D.M. Wright, M. Rother, H. Lühr, E.V. Mishin, C. Roth, V.L. Frolov, M. Parot, J.L. Rauch, Modification of the high-latitude ionosphere by high-power HF radio waves, 2: results of coordinated satellite and ground-based observations. Radiophys. Quantum Electron. 54, 89–101, 0033-8443/11/5402-0089 (2011)

    ADS  Google Scholar 

  • N.F. Blagoveshchenskaya, T.D. Borisova, T.K. Yeoman, M.T. Rietveld, I. Häggström, I.M. Ivanova, Plasma modifications induced by an X-mode HF heater wave in the high latitude F region of the ionosphere. J. Atmos. Sol.-Terr. Phys. 105–106, 231–244 (2013)

    ADS  Google Scholar 

  • N.F. Blagoveshchenskaya, T.D. Borisova, M. Kosch, T. Sergienko, U. Brändström, T.K. Yeoman, I. Häggström, Optical and ionospheric phenomena at EISCAT under continuous X-mode HF pumping. J. Geophys. Res. 119 (2014). https://doi.org/10.1002/2014JA020658

  • N.F. Blagoveshchenskaya, T.D. Borisova, T.K. Yeoman, I. Häggström, A.S. Kalishin, Modification of the high latitude ionosphere F region by X-mode powerful HF radiowaves: experimental results from multi-instrument diagnostics. J. Atmos. Sol.-Terr. Phys. 135, 50–63 (2015). https://doi.org/10.1016/j.jastp.2015.10.009

    Article  ADS  Google Scholar 

  • N.F. Blagoveshchenskaya, T.D. Borisova, A.S. Kalishin, T.K. Yeoman, I. Häggström, First observations of electron gyro-harmonic effects under X-mode HF pumping the high latitude ionospheric F-region. J. Atmos. Sol.-Terr. Phys. 155, 36–49 (2017)

    ADS  Google Scholar 

  • G.N. Boiko, L.M. Erukhimov, V.L. Frolov, Excitation of small-scale irregularities near the pump wave reflection level. Geomagn. Aeron. 30(6), 843–846 (1990)

    Google Scholar 

  • N. Borisov, A. Gurevich, K. Papadopoulos, Direct Cerenkov excitation of waveguide modes by a mobile ionospheric heater. Radio Sci. 33(4), 859 (1996)

    ADS  Google Scholar 

  • T.D. Borisova, N.F. Blagoveshchenskaya, T.K. Yeoman, I. Häggström, Excitation of artificial ionospheric turbulence in the high-latitude ionospheric F region as a function of the EISCAT/heating effective radiated power. Radiophys. Quantum Electron. 60, 4 (2017). https://doi.org/10.1007/s11141-017-9798-7

    Article  Google Scholar 

  • T. Bösinger, A. Kero, P. Pollari, A. Pashin, P. Belyaev, M. Rietveld, T. Turunen, J. Kangas, Generation of artificial magnetic pulsations in the Pc1 frequency range by periodic heating of the Earth’s ionosphere: indications of Alfven resonator effects. J. Atmos. Sol.-Terr. Phys. 62(4), 277–297 (2000)

    ADS  Google Scholar 

  • C.J. Bryers, M.J. Kosch, A. Senior, M.T. Rietveld, T.K. Yeoman, The threshold of plasma instabilities pumped by high frequency radio waves at EISCAT. J. Geophys. Res. 118, 7472–7481 (2013a). https://doi.org/10.1002/2013JA019429

    Article  Google Scholar 

  • C.J. Bryers, M.J. Kosch, A. Senior, M.T. Rietveld, W. Singer, A comparison between resonant and non-resonant heating at EISCAT. J. Geophys. Res. 118, 6766–6776 (2013b). https://doi.org/10.1002/jgra.50605

    Article  Google Scholar 

  • T. Burinskaya, A. Volokitin, Nonlinear dynamics of thermal modulational instability. Physica 2D, 117–125 (1981)

    ADS  Google Scholar 

  • V. Bychenkov, V. Silin, S. Uryupin, Ion-acoustic turbulence and anomalous transport. Phys. Rep. 164, 119–215 (1988)

    ADS  Google Scholar 

  • P. Cannon, F. Honary, A GPU-accelerated finite-difference time-domain scheme for electromagnetic wave interaction with plasma. IEEE Trans. Antennas Propag. 63(7), 3042–3054 (2015). https://doi.org/10.1109/TAP.2015.2423710

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • P.D. Cannon, F. Honary, N. Borisov, Two-dimensional numerical simulation of O-mode to Z-mode conversion in the ionosphere. J. Geophys. Res. Space Phys. 121(3), 2755–2782 (2016). https://doi.org/10.1002/2015JA022105

    Article  ADS  Google Scholar 

  • H.C. Carlson, High power HF modification-geophysics, span of EM effects, and energy budget. Adv. Space Res. 13, 1015–1024 (1993). https://doi.org/10.1016/0273-1177(93)90046-E

    Article  Google Scholar 

  • H. Carlson, V. Wickwar, G. Mantas, Observations of fluxes of suprathermal electrons accelerated by HF excited Langmuir instabilities. J. Atmos. Terr. Phys. 12, 1089 (1982)

    ADS  Google Scholar 

  • H. Carlson, F. Djuth, L. Zhang, Creating space plasma from the ground. J. Geophys. Res. Space Phys. 122, 978 (2017). https://doi.org/10.1002/2016JA023380

    Article  ADS  Google Scholar 

  • L.F. Chernogor, V.L. Frolov, Features of the wave disturbances in the ionosphere during periodic heating of the plasma by the SURA radiation. Radiophys. Quantum Electron. 56(5), 276–289 (2013)

    ADS  Google Scholar 

  • A.A. Chernyshov et al., Approaches to studying the multiscale ionospheric structure using nanosatellites. Geomagn. Aeron. 56(1), 72–79 (2016). https://doi.org/10.1134/S0016793216010047

    Article  ADS  Google Scholar 

  • P.B. Chilson, E. Belova, M.T. Rietveld, S. Kirkwood, U.-P. Hoppe, First artificially induced modulation of PMSE using the EISCAT heating facility. Geophys. Res. Lett. 27(23), 3801–3804 (2000)

    ADS  Google Scholar 

  • M.B. Cohen, U.S. Inan, Terrestrial VLF transmitter injection into the magnetosphere. J. Geophys. Res. 117, A08310 (2012). https://doi.org/10.1029/2012JA017992

    Article  ADS  Google Scholar 

  • R. Cohen, J.D. Whitehead, Radio reflectivity of artificial modification of the ionospheric F layer. Geophys. Res. 75(31), 6439–6445 (1970)

    ADS  Google Scholar 

  • M.B. Cohen, M. Golkowski, U.S. Inan, Orientation of the HAARP ELF ionospheric dipole and the auroral electrojet. Geophys. Res. Lett. 35, L02806 (2008). https://doi.org/10.1029/2007GL032424

    Article  ADS  Google Scholar 

  • M.B. Cohen, U.S. Inan, M.A. Golkowski, M.J. McCarrick, ELF/VLF wave generation via ionospheric HF heating: experimental comparison of amplitude modulation, beam painting, and geometric modulation. J. Geophys. Res. 115, A02302 (2010). https://doi.org/10.1029/2009JA014410

    Article  ADS  Google Scholar 

  • M.B. Cohen, U.S. Inan, D. Piddyachiy, N.G. Lehtinen, M. Golkowski, Magnetospheric injection of ELF/VLF waves with steerable HF heating of the lower ionosphere. J. Geophys. Res. 116, A06308 (2011). https://doi.org/10.1029/2010JA016194

    Article  ADS  Google Scholar 

  • M. Cohen, M. Golkowski, N. Lehtinen, U. Inan, M. McCarrick, HF beam parameters in ELF/VLF wave generation via modulated heating of the ionosphere. J. Geophys. Res. 117 (2012a). https://doi.org/10.1029/2012JA017585

  • M.B. Cohen, R.C. Moore, M. Golkowski, N.G. Lehtinen, ELF/VLF wave generation from the beating of two HF ionospheric heating sources. J. Geophys. Res. 117, A12310 (2012b). https://doi.org/10.1029/2012JA018140

    Article  ADS  Google Scholar 

  • T. Cussac, M.A. Clair, P. Ultré-Guerard, F. Buisson, G. Lassalle-Balier, M. Ledu, C. Elisabelar, X. Passot, N. Rey, The DEMETER microsatellite and ground segment. Planet. Space Sci. 54(5), 413–427 (2006)

    ADS  Google Scholar 

  • A.G. Demekhov, V.Y. Trakhtengerts, M.M. Mogilevsky, L.M. Zelenyi, Current problems in studies of magnetospheric cyclotron masers and new space project “RESONANCE”. Adv. Space Res. 32(3), 355–374 (2003)

    ADS  Google Scholar 

  • R.S. Dhillon, T.R. Robinson, Observations of time dependence and aspect sensitivity of regions of enhanced UHF backscatter associated with RF heating. Ann. Geophys. 23, 75 (2005)

    ADS  Google Scholar 

  • Y. Dimant, A. Gurevich, K. Zybin, Acceleration of electrons under the action of intense radio-waves near electron cyclotron harmonics. J. Atmos. Terr. Phys. 54, 425–436 (1992)

    ADS  Google Scholar 

  • F. Djuth, D. DuBois, Temporal development of HF-excited Langmuir and ion turbulence at Arecibo. Earth Moon Planets 116, 19–53 (2015). https://doi.org/10.1007/s11038-015-9458-x

    Article  ADS  Google Scholar 

  • F. Djuth, P. Stubbe, M. Sulzer, H. Kohl, M. Rietveld, J. Elder, Altitude characteristics of plasma turbulence excited with the Tromsøsuperheater. J. Geophys. Res. 99, 333–339 (1994)

    ADS  Google Scholar 

  • F. Djuth, T. Pedersen, E. Gerken, P. Bernhardt, C. Selcher, W. Bristow, M. Kosch, Ionospheric modification at twice the electron cyclotron frequency. Phys. Rev. Lett. 94, 125001 (2005). https://doi.org/10.1103/PhysRevLett.94.125001

    Article  ADS  Google Scholar 

  • D.F. DuBois, D.A. Russell, P.Y. Cheung, M.P. Sulzer, High-power high-frequency-induced Langmuir turbulence in the smooth ionosphere at Arecibo, I: theoretical predictions for altitude-resolved plasma line radar spectra. Phys. Plasmas 8(3), 791–801 (2001)

    ADS  Google Scholar 

  • K. Dysthe, E. Mjølhus, H. Pécseli, K. Rypdal, Thermal cavitons. Phys. Scr. T2B, 548–559 (1982)

    ADS  MATH  Google Scholar 

  • B. Eliasson, Full-scale simulations of ionospheric Langmuir turbulence. Mod. Phys. Lett. B 27(8), 1330005 (2013). https://doi.org/10.1142/S0217984913300056

    Article  ADS  Google Scholar 

  • B. Eliasson, C.-L. Chang, K. Papadopoulos, Generation of ELF and ULF electromagnetic waves by modulated heating of the ionospheric F2 region. J. Geophys. Res. 117, A10320 (2012a). https://doi.org/10.1029/2012JA017935

    Article  ADS  Google Scholar 

  • B. Eliasson, X. Shao, G. Milikh, E.V. Mishin, K. Papadopoulos, Numerical modeling of artificial ionospheric layers driven by high-power HF-heating. J. Geophys. Res. 117, A10321 (2012b). https://doi.org/10.1029/2012JA018105

    Article  ADS  Google Scholar 

  • B. Eliasson, G. Milikh, X. Shao, E. Mishin, K. Papadopoulos, Incidence angle dependence of Langmuir turbulence and artificial ionospheric layers driven by high-power HF-heating. J. Plasma Phys. 81, 415810201 (2015). https://doi.org/10.1017/S0022377814000968

    Article  Google Scholar 

  • L.M. Erukhimov, S.A. Metelev, N.A. Mityakov, V.L. Frolov, Hysteresis phenomenon by artificial excitation of irregularities in ionospheric plasma. Radiophys. Quantum Electron. 21, 1209–1211 (1978)

    ADS  Google Scholar 

  • L.M. Erukhimov, S.A. Metelev, N.A. Mityakov, V.L. Frolov, Initial stage of interaction of intense radio waves with the plasma in the upper ionosphere. Geomagn. Aeron. 23(3), 352–356 (1983)

    Google Scholar 

  • L.M. Erukhimov, S.A. Metelev, E.N. Myasnikov, N.A. Mityakov, V.L. Frolov, Artificial ionospheric turbulence. Radiophys. Quantum Electron. 30, 156–171 (1987)

    ADS  Google Scholar 

  • L.M. Erukhimov, C.A. Metelev, D.V. Razumov, Diagnostics of ionospheric irregularities due to artificial radio radiation. Radiophys. Quantum Electron. 31, 928–935 (1988)

    ADS  Google Scholar 

  • D.T. Farley, C. La, Hoz.B. Fejer, Studies of the self-focusing instability at Arecibo. J. Geophys. Res. 88(A3), 2093–2102 (1983)

    ADS  Google Scholar 

  • J.A. Fejer, Ionospheric modification and parametric instabilities. Rev. Geophys. Space Phys. 17, 135–153 (1979)

    ADS  Google Scholar 

  • J.A. Fejer, H.M. Ierkic, R.F. Woodman, J. Rottger, M. Sulzer, R.A. Behnke, A. Veldhuis, Observations of the HF-enhanced plasma line with a 46.8-MHz radar and reinterpretation of previous observations with the 430-MHz radar. J. Geophys. Res. 88(A3), 2083–2092 (1983)

    ADS  Google Scholar 

  • J. Fennelly, Demonstration and Science Experiment (DSX) Space Weather Experiment (SWx), in Solar Physics and Space Weather Instrumentation III, ed. by S. Fineschi, J. Fennelly. Proc. of SPIE, vol. 7438 (2009), p. 743805-1-10. https://doi.org/10.1117/12.828321

    Chapter  Google Scholar 

  • C.S. Fish et al., Design, development, implementation, and on-orbit performance of the Dynamic Ionosphere CubeSat Experiment mission. Space Sci. Rev. 181, 61–120 (2014). https://doi.org/10.1007/s11214-014-0034-x

    Article  ADS  Google Scholar 

  • D. Forslund, Instabilities associated with heat conduction in the solar wind and their consequences. J. Geophys. Res. 75, 17–28 (1970). https://doi.org/10.1029/JA075i001p00017

    Article  ADS  Google Scholar 

  • V.L. Frolov, Influence of modulation transfer in the action of a powerful emission on the ionospheric plasma. Radiophys. Quantum Electron. 24, 354–356 (1981)

    ADS  Google Scholar 

  • V.L. Frolov, Control of spectral characteristics of artificial low-frequency ionosphere turbulence. Int. J. Geomagn. Aeron. 4(2), 159–165 (2003)

    Google Scholar 

  • V.L. Frolov et al., On the study of artificial ionospheric turbulence by means of stimulated electromagnetic emission. Radiophys. Quantum Electron. 37(7), 593–603 (1994)

    ADS  Google Scholar 

  • V.L. Frolov, L.M. Erukhimov, S.A. Metelev, E.N. Sergeev, Temporal behavior of artificial small-scale ionospheric irregularities: Review of experimental results. J. Atmos. Sol.-Terr. Phys. 59(18), 2317–2333 (1997)

    ADS  Google Scholar 

  • V.L. Frolov, E.N. Ermakova, L.M. Kagan et al., Features of the broad upshifted structure in stimulated electromagnetic emission spectra. J. Geophys. Res. 105(A9), 20,919–20,933 (2000)

    ADS  Google Scholar 

  • V.L. Frolov, E.N. Sergeev, E.N. Ermakova et al., Spectral features of stimulated electromagnetic emissions, measured in the 4.3–9.5 MHz pump wave frequency range. Geophys. Res. Lett. 28(16), 3103–3106 (2001)

    ADS  Google Scholar 

  • V.L. Frolov, E.N. Sergeev, G.P. Komrakov et al., The ponderomotive narrow continuum (NCp) component in stimulated electromagnetic emission spectra. J. Geophys. Res. 109, A07304 (2004). https://doi.org/10.1029/2001JA005063

    Article  ADS  Google Scholar 

  • V.L. Frolov et al., Modification of the terrestrial ionosphere by high-power short-wave radio radiation. Phys. Usp. 50(3), 15–24 (2007). https://doi.org/10.1070/PU2007v050n03ABEH006282

    Article  Google Scholar 

  • V.L. Frolov et al., Gyroharmonic features of the irregularities HF-induced in the ionosphere. Radiophys. Quantum Electron. 55(6), 357–381 (2012)

    ADS  Google Scholar 

  • V.L. Frolov et al., Generation of artificial ionospheric irregularities in the mid-latitude ionosphere modified by high-power high-frequency X-mode radio waves. Radiophys. Quantum Electron. 57(6), 393–416 (2014). https://doi.org/10.1007/s11141-014-9523-8

    Article  ADS  Google Scholar 

  • V.L. Frolov, V.O. Rapoport, E.A. Schorokhova, A.S. Belov, M. Parrot, J.-L. Rauch, Features of the electromagnetic and plasma disturbances induced at the altitudes of the Earth’s outer ionosphere by modification of the ionospheric F2 region using high-power waves radiated by the SURA heating facility. Radiophys. Quantum Electron. 59(3), 177–198 (2016). https://doi.org/10.1007/s11141-016-9688-4

    Article  ADS  Google Scholar 

  • V.L. Frolov, I.A. Bolotin, G.G. Vertogradov, V.G. Vertogradov, Generation of super small-scale artificial ionospheric irregularities in the ionosphere pumped by high-power HF radio waves. Radiophys. Quantum Electron. 60(6), 450–455 (2017). https://doi.org/10.1007/s11141-017-9813-z

    Article  ADS  Google Scholar 

  • A. Galeev, R. Sagdeev, Nonlinear plasma theory, in Reviews of Plasma Phys., vol. 7, ed. by M.A. Leontovich (Consultants Bureau, New York, 1979), pp. 1–180

    Google Scholar 

  • A. Galeev, R. Sagdeev, V. Shapiro, V. Shevchenko, Langmuir turbulence and dissipation of high-frequency energy. Sov. Phys. JETP 46, 711–719 (1977)

    ADS  Google Scholar 

  • A. Galeev, R. Sagdeev, V. Shapiro, V. Shevehenko, Beam plasma discharge and suprathermal electron tails, in Active Experiments in Space (Alpbach, Austria). Eur. Space Agency Spec. Publ., vol. ESA SP-195 (1983), pp. 151–155

    Google Scholar 

  • G.L. Gdalevich, Z. Klos, Y.M. Mikhailov, Excitation of ELF-VLF electric fields in ionospheric plasma in active experiments (Intercosmos-24 data). Geomagn. Aeron. 43(5), 602–609 (2003)

    Google Scholar 

  • L. Gelinas, M. Kelley, M. Sulzer, E. Mishin, M. Starks, In situ observations during an HF heating experiment at Arecibo: Evidence for Z-mode and electron cyclotron harmonic effects. J. Geophys. Res. 108, 1382 (2003). https://doi.org/10.1029/2003JA009922

    Article  Google Scholar 

  • G. Getmantsev, N. Zuikov, D. Kotik, L. Mironenko, N. Mityakov, V. Rapoport, Y. Sazonov, V. Trakhtengerts, V. Eidman, Combination frequencies in the interaction between high-power short-wave radiation and ionospheric plasma. JETP Lett. 20, 101 (1974)

    ADS  Google Scholar 

  • A. Gigliotti, W. Gekelman, P. Pribyl, S. Vincena, A. Karavaev, X. Shao, A.S. Sharma, D. Papadopoulos, Generation of polarized shear Alfven waves by rotating magnetic field source. Phys. Plasmas 16, 092106 (2009)

    ADS  Google Scholar 

  • M. Gołkowski, U.S. Inan, A.R. Gibby, M.B. Cohen, Magnetospheric amplification and emission triggering by ELF/VLF waves injected by the 3.6 MW HAARP ionospheric heater. J. Geophys. Res. 113, A10201 (2008). https://doi.org/10.1029/2008JA013157

    Article  ADS  Google Scholar 

  • M. Gołkowski, U.S. Inan, M.B. Cohen, Cross modulation of whistler mode and HF waves above the HAARP ionospheric heater. Geophys. Res. Lett. 36, L15103 (2009). https://doi.org/10.1029/2009GL039669

    Article  ADS  Google Scholar 

  • M. Gołkowski, U.S. Inan, M.B. Cohen, A.R. Gibby, Amplitude and phase of nonlinear magnetospheric wave growth excited by the HAARP HF heater. J. Geophys. Res. 115, A00F04 (2010). https://doi.org/10.1029/2009JA014610

    Article  ADS  Google Scholar 

  • M. Gołkowski, M.B. Cohen, D.L. Carpenter, U.S. Inan, On the occurrence of ground observations of ELF/VLF magnetospheric amplification induced by the HAARP facility. J. Geophys. Res. 116, A04208 (2011). https://doi.org/10.1029/2010JA016261

    Article  ADS  Google Scholar 

  • W.E. Gordon, H.C. Carlson, R.L. Showen, Ionospheric heating at Arecibo: first tests. J. Geophys. Rev. 76(31), 7808–7813 (1971)

    ADS  Google Scholar 

  • S. Grach, Thermal parametric instability in ionospheric plasma at frequencies close to \(\omega _{He}\) and 2\(\omega _{He}\). Radiophys. Quantum Electron. 22, 357–361 (1979)

    ADS  Google Scholar 

  • S. Grach, N. Mityakov, V. Rapoport, V. Trakhtengertz, Thermal parametric turbulence in a plasma. Physica D 2, 102–106 (1981)

    ADS  MATH  Google Scholar 

  • S.M. Grach, B. Thidé, T.B. Leyser, Plasma waves near the double resonance layer in the ionosphere. Radiophys. Quantum Electron. 37, 392–402 (1994)

    ADS  Google Scholar 

  • S. Grach, S. Sergeev, V. Yashnov, V. Kotov, Spectra of stimulated electromagnetic emission of the ionosphere during pump frequency sweeping near gyroharmonics. II. Discussion of the results. Radiophys. Quantum Electron. 51, 499–514 (2008)

    ADS  Google Scholar 

  • S. Grach, E. Sergeev, E. Mishin, A. Shindin, M. McCarrick, Intermediate downshifted maximum of stimulated electromagnetic emission at high-power HF heating: A new twist on an old problem. J. Geophys. Res. Space Phys. 120, 666–674 (2015). https://doi.org/10.1002/2014JA020423

    Article  ADS  Google Scholar 

  • S. Grach, E. Sergeev, E. Mishin, A. Shindin, Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves. Phys. Usp. 59, 1091–1128 (2016). https://doi.org/10.3367/UFNe.2016.07.03786

    Article  ADS  Google Scholar 

  • A. Gurevich, Nonlinear Phenomena in the Ionosphere (Springer, New York, 1978)

    Google Scholar 

  • A. Gurevich, Nonlinear effects in the ionosphere. Phys. Usp. 50, 1091–1121 (2007). https://doi.org/10.1070/PU2007v050n11ABEH006212

    Article  ADS  Google Scholar 

  • A.V. Gurevich, V.V. Migulin, Investigations in the U.S.S.R. of non-linear phenomena in the ionosphere. J. Atmos. Terr. Phys. 44(12), 1019–1024 (1982)

    ADS  Google Scholar 

  • A.V. Gurevich, K.P. Zybin, Strong field aligned scattering of UHF radio waves in ionospheric modification. Phys. Lett. A 358, 159–165 (2006)

    ADS  MATH  Google Scholar 

  • A.V. Gurevich, A.V. Lukyanov, K.P. Zybin, Stationary state of isolated striations developed during ionospheric modification. Phys. Lett. A. 206, 247–259 (1995)

    ADS  Google Scholar 

  • A. Gurevich, A. Lukyanov, K. Zybin, Anomalous absorption of powerful radio waves on the striations developed during ionospheric modification. Phys. Lett. A 211, 363–372 (1996)

    ADS  Google Scholar 

  • A. Gurevich, T. Hagfors, H. Carlson, A. Karashtin, K. Zybin, Self oscillations and bunching of striations in ionospheric modifications. Phys. Lett. A. 239, 385–392 (1998)

    ADS  Google Scholar 

  • A. Gurevich, K. Zybin, H. Carlson, T. Pedersen, Magnetic zenith effect in ionospheric modifications. Phys. Lett. A 305, 264–274 (2002)

    ADS  Google Scholar 

  • B. Gustavsson, B. Eliasson, HF radio wave acceleration of ionospheric electrons: analysis of HF-induced optical enhancements. J. Geophys. Res. 113, A08319 (2008). https://doi.org/10.1029/2007JA012913

    Article  ADS  Google Scholar 

  • B. Gustavsson, T. Sergienko, M.J. Kosch, M.T. Rietveld, A. Steen, B.U.E. Brandstrom, T.B. Leyser, B. Isham, P. Gallop, T. Aso, M. Ejiri, K. Kaila, J. Jussila, H. Holma, The electron distribution during HF pumping—a picture painted in all colours. Ann. Geophys. 23, 1747–1754 (2005)

    ADS  Google Scholar 

  • B. Gustavsson, T. Leyser, M. Kosch, M. Rietveld, Å. Steen, B. Brändström, T. Aso, Electron gyroharmonic effects in ionization and electron acceleration during High-Frequency pumping in the ionosphere. Phys. Rev. Lett. 97, 195002 (2006). https://doi.org/10.1103/PhysRevLett.97.195002

    Article  ADS  Google Scholar 

  • B. Gustavsson, M. Kosch, A. Wong, T. Pedersen, C. Heinselman, C. Mutiso, B. Bristow, J. Hughes, W. Wang, First estimates of volume distribution of HF-pump enhanced emissions at 6300 and 5577 Å: a comparison between observations and theory. Ann. Geophys. 26, 3999–4012 (2008)

    ADS  Google Scholar 

  • B. Gustavsson, R. Newsome, T.B. Leyser, M.J. Kosch, L. Norin, M. McCarrick, T. Pedersen, B.J. Watkins, First observations of X-mode suppression of O-mode HF enhancements at 6300 Å. Geophys. Res. Lett. 36, L20102 (2009). https://doi.org/10.1029/2009GL039421

    Article  ADS  Google Scholar 

  • B. Gustavsson, M.T. Rietveld, N.V. Ivchenko, M.J. Kosch, The rise and fall of electron temperatures, I: Ohmic heating of ionospheric electrons from under-dense HF-radio wave pumping. J. Geophys. Res. 115, A12332 (2010). https://doi.org/10.1029/2010JA015873

    Article  ADS  Google Scholar 

  • P. Guzdar, P. Chaturvedi, K. Papadopoulos, S. Ossakow, The thermal self-focussing instability near the critical surface in the high-latitude ionosphere. J. Geophys. Res. 103, 2231–2237 (1998)

    ADS  Google Scholar 

  • O. Havnes, C. La Hoz, L.I. Naesheim, M.T. Rietveld, First observations of the PMSE overshoot effect and its use for investigating the conditions in the summer mesosphere. Geophys. Res. Lett. 30(23), 2229 (2003). https://doi.org/10.1029/2003GL018429

    Article  ADS  Google Scholar 

  • R. Helliwell, Whistlers and Related Ionospheric Phenomena (Stanford University Press, Stanford, 1965)

    Google Scholar 

  • R. Helliwell, VLF simulated experiments in the magnetosphere from Siple station, Antarctica. Rev. Geophys. 26, 551 (1988)

    ADS  Google Scholar 

  • F.H. Hibberd, E. Nielsen, P. Stubbe, H. Kopka, M.T. Rietveld, Production of auroral zone E region irregularities by powerful HF heating. J. Geophys. Res. 88(A8), 6347–6351 (1983)

    ADS  Google Scholar 

  • P. Hoeg, Directional changes in the irregularity drift during artificial generation of striations. Phys. Scr. 33, 469–474 (1986)

    ADS  Google Scholar 

  • H. Holma, K. Kaila, M.J. Kosch, M.T. Rietveld, Recognising the blue emission in artificial aurora. Adv. Space Res. 38(11), 2653–2658 (2006)

    ADS  Google Scholar 

  • O. Holt, A. Brekke, T. Hansen, H. Kopka, P. Stubbe, HF modification of the auroral D-region detected by a partial reflection experiment. J. Atmos. Terr. Phys. 47(6), 537–545 (1985)

    ADS  Google Scholar 

  • F. Honary, T. Robinson, D. Wright, A. Stocker, M. Rietveld, I. McCrea, First direct evidence of the reduced striations at pump frequencies close to the electron gyroharmonics. Ann. Geophys. 17, 1235–1238 (1999)

    ADS  Google Scholar 

  • F. Honary, N. Borisov, M. Beharrell, A. Senior, Temporal development of the magnetic zenith effect. J. Geophys. Res. 116, A06309 (2011). https://doi.org/10.1029/2010JA016029

    Article  ADS  Google Scholar 

  • J. Huang, S. Kuo, A theoretical model for the broad upshifted maximum in the stimulated electromagnetic emission spectrum. J. Geophys. Res. 99, 19,569–19,576 (1994)

    ADS  Google Scholar 

  • J. Huang, S.P. Kuo, A generation mechanism for the downshifted peak in stimulated electromagnetic emission spectrum. J. Geophys. Res. 100, 21,433–21,438 (1995). https://doi.org/10.1029/95JA02302

    Article  ADS  Google Scholar 

  • A. Hussein, W. Scales, J. Huang, Theoretical and simulation studies of broad up-shifted sideband generation in ionospheric stimulated radiation. Geophys. Res. Lett. 25, 955–958 (1998)

    ADS  Google Scholar 

  • D.L. Hysell, M.C. Kelley, Y.M. Yampolski, V.S. Beley, A.V. Koloskov, P.V. Ponomarenko, O.F. Tyrnov, HF radar observations of decaying artificial field-aligned irregularities. J. Geophys. Res. 101(A12), 26981–26993 (1996). https://doi.org/10.1029/96JA02647

    Article  ADS  Google Scholar 

  • D.L. Hysell, E. Nossa, M. McCarrick, Excitation threshold and gyroharmonic suppression of artificial E region field-aligned plasma density irregularities. Radio Sci. 45, RS6003 (2010). https://doi.org/10.1029/2010RS004360

    Article  ADS  Google Scholar 

  • D. Hysell, R. Miceli, E. Kendall, N. Schlatter, R. Varney, B. Watkins, T. Pedersen, P. Bernhardt, J. Huba, Heater-induced ionization inferred from spectrometric airglow measurements. J. Geophys. Res. 119 (2014). https://doi.org/10.1002/2013JA019663

  • U. Inan, H. Chang, R. Helliwell, W. Imhof, J. Reagan, M. Walt, Precipitation of radiation belt electrons by man-made waves: a comparison between theory and measurement. J. Geophys. Res. 90, 359 (1985)

    ADS  Google Scholar 

  • U. Inan, T. Bell, J. Bortnik, J. Albert, Controlled precipitation of radiation belt electrons. J. Geophys. Res. 108, 1186 (2003). https://doi.org/10.1029/2002JA009580

    Article  Google Scholar 

  • U.S. Inan, M. Gołkowski, D.L. Carpenter, N. Reddell, R.C. Moore, T.F. Bell, E. Paschal, P. Kossey, E. Kennedy, S.Z. Meth, Multi-hop whistler-mode ELF/VLF signals and triggered emissions excited by the HAARP HF heater. Geophys. Res. Lett. 31, L24805 (2004). https://doi.org/10.1029/2004GL021647

    Article  ADS  Google Scholar 

  • B. Isham, T. Hagfors, E. Mishin, M. Rietveld, C. LaHoz, W. Kofman, T. Leyser, A search for the location of the HF excitation of enhanced ion acoustic and Langmuir waves with EISCAT and the Tromsøheater. Radiophys. Quantum Electron. 42, 607–618 (1999b)

    Google Scholar 

  • B. Isham, C. Hoz, M. Rietveld, T. Hagfors, T. Leyser, Cavitating Langmuir turbulence observed during EISCAT high latitude ionospheric interaction experiments. Phys. Rev. Lett. 83, 2576 (1999a)

    ADS  Google Scholar 

  • B. Isham, C.A. Tepley, M.P. Sulzer, Q.H. Zhou, M.C. Kelley, J.S. Friedman, S.A. Gonz´alez, Upper atmospheric observations at the Arecibo Observatory: Examples obtained using new capabilities. J. Geophys. Res. 105, 18609–18637 (2000). https://doi.org/10.1029/1999JA900315

    Article  ADS  Google Scholar 

  • Y. Istomin, T. Leyser, Parametric decay of an electromagnetic wave near electron cyclotron harmonics. Phys. Plasmas 2, 2084–2097 (1995)

    ADS  Google Scholar 

  • H.G. James, V.L. Frolov, E.S. Andreeva, A.M. Padokhin, C.L. Siefring, SURA heating facility transmissions to the CASSIOPE/e-POP satellite. Radio Sci. 52, 259–270 (2017). https://doi.org/10.1002/2016RS006190

    Article  ADS  Google Scholar 

  • T.B. Jones, T. Robinson, P. Stubbe, H. Kopka, A hysteresis effect in the generation of field-aligned irregularities by a high-power radio wave. Radio Sci. 18(6), 835–839 (1983)

    ADS  Google Scholar 

  • L.M. Kagan, V.L. Frolov, Significance of field-aligned currents for F-region perturbation. J. Atmos. Terr. Phys. 58(13), 1465–1474 (1996)

    ADS  Google Scholar 

  • L.M. Kagan, M.C. Kelley, F. Garcia et al., The structure of electromagnetic wave-induced 557.7-nm emission associated with a aporadic-E event over Arecibo. Phys. Rev. Lett. 85(1), 218–221 (2000)

    ADS  Google Scholar 

  • L.M. Kagan et al., Optical and RF diagnostics of the ionosphere over the SURA facility: review of results. Radio Phys. Radio Astron. 11(3), 221–241 (2006)

    ADS  Google Scholar 

  • K.S. Kalogerakis, T.G. Slanger, E.A. Kendall, T.R. Pedersen, M.J. Kosch, B. Gustavsson, M.T. Rietveld, Remote Oxygen Sensing by Ionospheric Excitation (ROSIE). Ann. Geophys. 27, 1–7 (2009)

    Google Scholar 

  • A.V. Karavaev, N.A. Gumerov, K. Papadopoulos, X. Shao, A.S. Sharma, W. Gekelman, A. Gigliotti, P. Pribyl, S. Vincena, Generation of whistler waves by a rotating magnetic field source. Phys. Plasmas 17, 012102 (2010)

    ADS  Google Scholar 

  • A.V. Karavaev, N.A. Gumerov, K. Papadopoulos, X. Shao, A.S. Sharma, W. Gekelman, A. Gligliotti, P. Pribyl, S. Vincena, Generation of shear Alfvén waves by a rotating magnetic field source: 3D simulations. Phys. Plasmas 18, 032113 (2011)

    ADS  Google Scholar 

  • A.J. Kavanagh, F. Honary, M.T. Rietveld, A. Senior, First observations of the artificial modulation of polar mesospheric winter echoes. Geophys. Res. Lett. 33, L19801 (2006). https://doi.org/10.1029/2006GL027565

    Article  ADS  Google Scholar 

  • M.C. Kelley, T.L. Arce, J. Salowey, M. Sulzer, W.T. Armstrong, M. Carter, L. Duncan, Density depletions at the 10-m scale induced by the Arecibo heater. J. Geophys. Res. 100, 17367–17376 (1995)

    ADS  Google Scholar 

  • E. Kendall, R. Marshall, R.T. Parris, A. Bhatt, A. Coster, T. Pedersen, P. Bernhardt, C. Selcher, Decameter structure in heater-induced airglow at the high frequency active auroral research program facility. J. Geophys. Res. 115, A08306 (2010). https://doi.org/10.1029/2009JA015043

    Article  ADS  Google Scholar 

  • A. Kero, T. Bösinger, P. Pollari, E. Turunen, M. Rietveld, First EISCAT measurement of electron-gas temperature in the artificially heated D-region ionosphere. Ann. Geophys. 18(9), 1210–1215 (2000)

    ADS  Google Scholar 

  • E. Kolesnikova, T.R. Robinson, J.A. Davies, D.M. Wright, M. Lester, Excitation of Alfven waves by modulated HF heating of the ionosphere, with application to FAST observations. Ann. Geophys. 20, 57–67 (2002)

    ADS  Google Scholar 

  • M. Kosch, T. Rietveld, T. Hagfors, T. Leyser, High-latitude HF-induced airglow displaced equatorwards of the pump beam. Geophys. Res. Lett. 27, 2817–2820 (2000). https://doi.org/10.1029/2000GL003754

    Article  ADS  Google Scholar 

  • M.J. Kosch, M.T. Rietveld, A.J. Kavanagh, C. Davis, T. Yeoman, F. Honary, T. Hagfors, High-latitude pump-induced optical emissions for frequencies close to the third electron gyro-harmonic. Geophys. Res. Lett. 29(23), 2112 (2002). https://doi.org/10.1029/2002GL015744

    Article  ADS  Google Scholar 

  • M. Kosch, M. Rietveld, A. Senior, I. McCrea, A. Kavanagh, B. Isham, F. Honary, Novel artificial optical annular structures in the high latitude ionosphere. Geophys. Res. Lett. 31, L12805 (2004). https://doi.org/10.1029/2004GL019713

    Article  ADS  Google Scholar 

  • M. Kosch, T. Pedersen, J. Hughes, R. Marshall, E. Gerken, A. Senior, D. Sentman, M. McCarrick, F. Djuth, Artificial optical emissions at HAARP for pump frequencies near the third and second gyroharmonic. Ann. Geophys. 23, 1585–1592 (2005)

    ADS  Google Scholar 

  • M. Kosch, T. Pedersen, E. Mishin, S. Oyama, J. Hughes, A. Senior, B. Watkins, B. Bristow, Coordinated optical and radar observations of ionospheric pumping for a frequency pass through the second electron gyroharmonic at HAARP. J. Geophys. Res. 112, A06325 (2007a). https://doi.org/10.1029/2006JA012146

    Article  ADS  Google Scholar 

  • M. Kosch, T. Pedersen, E. Mishin, M. Starks, E. Gerken-Kendall, D. Sentman, S. Oyama, B. Watkins, Temporal evolution of pump beam self-focusing at the high-frequency active auroral research program. J. Geophys. Res. 112, A08304 (2007b). https://doi.org/10.1029/2007JA012264

    Article  ADS  Google Scholar 

  • M.J. Kosch, T. Pedersen, M.T. Rietveld, B. Gustavsson, S.M. Grach, T. Hagfors, Artificial optical emissions in the high-latitude thermosphere induced by powerful radio waves: an observational review. Adv. Space Res. 40, 365–376 (2007c). https://doi.org/10.1016/j.asr.2007.02.061

    Article  ADS  Google Scholar 

  • M. Kosch, Y. Ogawa, M. Rietveld, S. Nozawa, R. Fujii, An analysis of pump-induced artificial ionospheric ion upwelling at EISCAT. J. Geophys. Res. 115, A12317 (2010). https://doi.org/10.1029/2010JA015854

    Article  ADS  Google Scholar 

  • M.J. Kosch, C. Bryers, M.T. Rietveld, T.K. Yeoman, Y. Ogawa, Aspect angle sensitivity of pump-induced optical emissions at EISCAT. Earth Planets Space 66, 159 (2014a). https://doi.org/10.1186/s40623-014-0159-x

    Article  Google Scholar 

  • M.J. Kosch, H. Vickers, Y. Ogawa, A. Senior, N. Blagoveshchenskaya, First observation of the anomalous electric field in the topside ionosphere by ionospheric modification over EISCAT. Geophys. Res. Lett. 41(21), 7427–7435 (2014b). https://doi.org/10.1002/2014GL061679

    Article  ADS  Google Scholar 

  • D.S. Kotik, E.N. Ermakova, Resonances in the generation of electromagnetic signals due to the thermal cubic nonlinearity in the lower ionosphere. J. Atmos. Sol.-Terr. Phys. 60(12), 1257 (1998)

    ADS  Google Scholar 

  • V.E. Kunitsyn, E.D. Tereshchenko, E.S. Andreeva, I.A. Nesterov, Satellite radio probing and radio tomography of the ionosphere. Usp. Fiz. Nauk 180(5), 548–553 (2010). https://doi.org/10.3367/UFNr.0180.201005k.0548

    Article  Google Scholar 

  • V.E. Kunitsyn, E.S. Andreeva, V.L. Frolov, G.P. Komrakov, M.O. Nazarenko, A.M. Padokhin, Sounding of HF heating-induced artificial ionospheric disturbances by navigation satellite radio transmissions. Radio Sci. 47(4), RS0L15 (2012). https://doi.org/10.1029/2011RS004957

    Article  Google Scholar 

  • S. Kuo, Electron cyclotron harmonic resonances in high-frequency heating of the ionosphere. Phys. Plasmas 20, 092124 (2013). https://doi.org/10.1063/1.4822336

    Article  ADS  Google Scholar 

  • S. Kuo, Ionospheric modifications in high frequency heating experiments. Phys. Plasmas 22, 012901 (2015). https://doi.org/10.1063/1.4905519

    Article  ADS  Google Scholar 

  • S. Kuo, M. Lee, P. Kossey, Excitation of oscillating two-stream instability by upper hybrid pump in ionospheric heating experiments at Tromsø. Geophys. Res. Lett. 24, 2969–2972 (1997)

    ADS  Google Scholar 

  • S. Kuo, A. Snyder, P. Kossey, C.-L. Chang, J. Labenski, VLF wave generation by beating of two HF waves in the ionosphere. Geophys. Res. Lett. 38, L10608 (2011). https://doi.org/10.1029/2011GL047514

    Article  ADS  Google Scholar 

  • S. Kuo, A. Snyder, P. Kossey, C.-L. Chang, J. Labenski, Beating HF waves to generate VLF waves in the ionosphere. J. Geophys. Res. 117, A03318 (2012). https://doi.org/10.1029/2011JA017076

    Article  ADS  Google Scholar 

  • N. Lehtinen, U. Inan, Radiation of ELF/VLF waves by harmonically varying currents into a stratified ionosphere with application to radiation by a modulated electrojet. J. Geophys. Res. 113, A06301 (2008). https://doi.org/10.1029/2007JA012911

    Article  ADS  Google Scholar 

  • T.B. Leyser, Stimulated electromagnetic emissions by high-frequency electromagnetic pumping of the ionospheric plasma. Space Sci. Rev. 98, 223 (2001). https://doi.org/10.1023/A:1013875603938

    Article  ADS  Google Scholar 

  • T.B. Leyser, E. Nordblad, Self-focused radio frequency L wave pumping of localized upper hybrid oscillations in high-latitude ionospheric plasma. Geophys. Res. Lett. 36(24), L24105 (2009). https://doi.org/10.1029/2009GL041438

    Article  ADS  Google Scholar 

  • T.B. Leyser, A.Y. Wong, Powerful electromagnetic waves for active environmental research in geospace. Rev. Geophys. 47, 1 (2009). https://doi.org/10.1029/2007rg000235

    Article  Google Scholar 

  • T.B. Leyser, B. Thide, H. Derblom et al., Dependence of stimulated electromagnetic emission on the ionosphere and pump wave. J. Geophys. Res. 95(A10), 17,233–17,244 (1990)

    ADS  Google Scholar 

  • T.B. Leyser, B. Thide, M. Waldenvik et al., Spectral structure of stimulated electromagnetic emission between electron cyclotron harmonics. J. Geophys. Res. 98(A10), 17,597–17,606 (1993)

    ADS  Google Scholar 

  • T.B. Leyser, B. Thide, M. Waldenvik et al., Downshifted maximum features in stimulated electromagnetic emission spectra. J. Geophys. Res. 99(A10), 19,555–19,568 (1994)

    ADS  Google Scholar 

  • T.B. Leyser, B. Gustavsson, B.U.E. Brandstrom, Å. Steen, F. Honary, M.T. Rietveld, T. Aso, M. Ejiri, Simultaneous measurements of high-frequency pump-enhanced airglow and ionospheric temperatures at auroral latitudes. Adv. Polar Upper Atmos. Res. 14, 1–11 (2000)

    Google Scholar 

  • A. Mahmoudian, W.A. Scales, M.J. Kosch, A. Senior, M. Rietveld, Dusty space plasma diagnosis using temporal behavior of polar mesospheric summer echoes during active modification. Ann. Geophys. 29, 2169–2179 (2011)

    ADS  Google Scholar 

  • A. Mahmoudian, W. Scales, P. Bernhardt, A. Samimi, E. Kendall, J. Ruohoniemi, B. Isham, O. Vega-Cancel, M. Bordikar, Ion gyro-harmonic structuring in the stimulated radiation spectrum and optical emissions during electron gyro-harmonic heating. J. Geophys. Res. 118, 1270–1287 (2013). https://doi.org/10.1002/jgra.50167

    Article  Google Scholar 

  • T. Majeed, D.J. Strickland, New survey of electron impact cross sections for photoelectron and auroral electron energy loss calculations. J. Phys. Chem. Ref. Data 26, 335–349 (1997)

    ADS  Google Scholar 

  • G.A. Markov, Excitation of a magnetospheric maser through modification of the Earth’s ionosphere by high-power HF radio emission from a ground-based transmitter. J. Exp. Theor. Phys. 111, 916 (2010). https://doi.org/10.1134/S1063776110120046

    Article  ADS  Google Scholar 

  • J.D. Mathews, A short history of geophysical radar at Arecibo Observatory. Hist. Geo-Space Sci. 4, 19–33 (2013). https://doi.org/10.5194/hgss-4-19-2013

    Article  ADS  Google Scholar 

  • A.S. Maxworth, M. Gołkowski, M.B. Cohen, R.C. Moore, H.T. Chorsi, S.D. Gedney, R. Jacobs, Multistation observations of the azimuth, polarization, and frequency dependence of ELF/VLF waves generated by electrojet modulation. Radio Sci. 50 (2015). https://doi.org/10.1002/2015RS005683

  • M.J. McCarrick, D. Sentman, A. Wong, R. Wuerker, B. Chouinard, Excitation of ELF waves in the Schumann resonance range by modulated HF heating of the polar electrojet. Radio Sci. 25, 1291 (1990)

    ADS  Google Scholar 

  • I. McCrea, A. Aikio, L. Alfonsi, E. Belova, S. Buchert, M. Clilverd, N. Engler, B. Gustavsson, C. Heinselman, J. Kero, M. Kosch, H. Lamy, T. Leyser, Y. Ogawa, K. Oksavik, A. Pellinen-Wannberg, F. Pitout, M. Rapp, I. Stanislawska, J. Vierinen, The science case for the EISCAT_3D radar. Prog. Earth Planet. Sci. 2, 21 (2015). https://doi.org/10.1186/s40645-015-0051-8

    Article  ADS  Google Scholar 

  • G.M. Milikh, K. Papadopoulos, Enhanced ionospheric ELF/VLF generation efficiency by multiple timescale modulated heating. Geophys. Res. Lett. 34, L20804 (2007). https://doi.org/10.1029/2007GL031518

    Article  ADS  Google Scholar 

  • G. Milikh, A. Gurevich, K. Zybin, J. Secan, Perturbations of GPS signals by the ionospheric irregularities generated due to HF-heating at triple of electron gyrofrequency. Geophys. Res. Lett. 35, L22102 (2008b). https://doi.org/10.1029/2008GL035527

    Article  ADS  Google Scholar 

  • G.M. Milikh, K. Papadopoulos, H. Shroff, C.L. Chang, T. Wallace, E.V. Mishin, M. Parrot, J.J. Berthelier, Formation of artificial ionospheric ducts. Geophys. Res. Lett. 35, L17104 (2008a). https://doi.org/10.1029/2008GL034630

    Article  ADS  Google Scholar 

  • G.M. Milikh, A.G. Demekhov, K. Papadopoulos, A. Vartanyan, J.D. Huba, G. Joyce, Model for artificial ionospheric duct formation due to HF heating. Geophys. Res. Lett. 37, L07803 (2010b). https://doi.org/10.1029/2010GL042684

    Article  ADS  Google Scholar 

  • G.M. Milikh, E. Mishin, I. Galkin, A. Vartanyan, C. Roth, B.W. Reinisch, Ion outflows and artificial ducts in the topside ionosphere at HAARP. Geophys. Res. Lett. 37, L18102 (2010a). https://doi.org/10.1029/2010GL044636

    Article  ADS  Google Scholar 

  • J. Minkoff, P. Kugelman, I. Weissman, Radio frequency scattering from a heated ionospheric volume, 1, VHF/UHF field-aligned and plasma-line backscatter measurements. Radio Sci. 9(11), 941–955 (1974)

    ADS  Google Scholar 

  • E. Mishin, Heat transport in the solar wind. Astrophys. Space Sci. 27, 367–382 (1974)

    ADS  Google Scholar 

  • E. Mishin, T. Pedersen, Ionizing wave via high-power HF acceleration. Geophys. Res. Lett. 38, L01105 (2011). https://doi.org/10.1029/2010GL046045

    Article  ADS  Google Scholar 

  • E. Mishin, V. Telegin, Spectrum of suprathermal electrons in the auroral plasma. Sov. J. Plasma Phys. 12, 509–511 (1986)

    Google Scholar 

  • E. Mishin, T. Hagfors, B. Isham, A generation mechanism for topside enhanced incoherent backscatter during high frequency modification experiments in Tromsø. Geophys. Res. Lett. 28, 479–482 (2001)

    ADS  Google Scholar 

  • E. Mishin, W. Burke, T. Pedersen, On the onset of HF-induced airglow at magnetic zenith. J. Geophys. Res. 109, A02305 (2004). https://doi.org/10.1029/2003JA010205

    Article  ADS  Google Scholar 

  • E. Mishin, W. Burke, T. Pedersen, HF-induced airglow at magnetic zenith: theoretical considerations. Ann. Geophys. 23, 47–53 (2005a)

    ADS  Google Scholar 

  • E. Mishin, M. Kosch, T. Pedersen, W. Burke, HF-induced airglow at magnetic zenith: coexistence of the thermal and parametric instabilities near electron gyroharmonics. Geophys. Res. Lett. 32, L23106 (2005b). https://doi.org/10.1029/2005GL023864

    Article  ADS  Google Scholar 

  • E. Mishin, E. Sutton, G. Milikh, I. Galkin, C. Roth, M. Förster, F2-region atmospheric gravity waves due to high-power HF heating and subauroral polarization streams. Geophys. Res. Lett. 39, L11101 (2012). https://doi.org/10.1029/2012GL052004

    Article  ADS  Google Scholar 

  • E. Mishin, B. Watkins, N. Lehtinen, B. Eliasson, T. Pedersen, S. Grach, Artificial ionospheric layers driven by high-frequency radiowaves: An assessment. J. Geophys. Res. Space Phys. 121, 3497–3524 (2016). https://doi.org/10.1002/2015JA021823

    Article  ADS  Google Scholar 

  • E. Mjølhus, On linear conversion in a magnetized plasma. Radio Sci. 25, 1321–1339 (1990)

    ADS  Google Scholar 

  • E. Mjølhus, On the small scale striation effect in ionospheric radio modification experiments near harmonics of the electron gyro frequency. J. Atmos. Terr. Phys. 55, 907 (1993)

    ADS  Google Scholar 

  • E. Mjølhus, E. Helmersen, D. DuBois, Geometric aspects of HF driven Langmuir turbulence in the ionosphere. Nonlinear Process. Geophys. 10, 151–177 (2003)

    ADS  Google Scholar 

  • M.M. Mogilevsky, L.M. Zelenyi, A.G. Demekhov, A.A. Petrukovich, D.R. Shklyar, RESONANCE project for studies of wave-particle interactions in the inner magnetosphere, in Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere, ed. by e.D. Summers, I.R. Mann, D.N. Baker, M. Schulz (American Geophysical Union, Washington, 2012). https://doi.org/10.1029/2012GM001334

    Chapter  Google Scholar 

  • R.C. Moore, S. Fujjimaru, M. Cohen, M. Golkowski, M.J. McCarrick, On the altitude of the ELF/VLF source region generated during “beat wave” HF heating experiments. Geophys. Res. Lett. 39, L18101 (2012). https://doi.org/10.1029/2012GL053210

    Article  ADS  Google Scholar 

  • R.C. Moore, S. Fujimaru, D.A. Kotovsky, M. Gołkowski, Observations of ionospheric ELF and VLF wave generation by excitation of the thermal cubic nonlinearity. Phys. Rev. Lett. 111(23), 235007 (2013). https://doi.org/10.1103/PhysRevLett.111.235007

    Article  ADS  Google Scholar 

  • S.L. Musher, A.M. Rubenchik, B.I. Sturman, Collective effects associated with lower hybrid heating of plasma. Plasma Phys. 20, 1131–1150 (1978)

    ADS  Google Scholar 

  • C. Mutiso, J. Hughes, G. Sivjee, T. Pedersen, B. Gustavsson, M. Kosch, Previously unreported optical emissions generated during ionospheric heating. Geophys. Res. Lett. 35, L14103 (2008). https://doi.org/10.1029/2008GL034563

    Article  ADS  Google Scholar 

  • A. Najmi, G. Milikh, J. Secan, K. Chiang, M. Psiaki, P. Bernhardt, S. Briczinski, C. Siefring, C.L. Chang, K. Papadopoulos, Generation and detection of super small striations by F region HF heating. J. Geophys. Res. Space Phys. 119(7) (2014). https://doi.org/10.1002/2014JA020038

  • A. Najmi, B. Eliasson, X. Shao, G. Milikh, K. Papadopoulos, Simulations of ionospheric turbulence produced by HF heating near the upper hybrid layer. Radio Sci. 51, 704–717 (2016). https://doi.org/10.1002/2015RS005866

    Article  ADS  Google Scholar 

  • S. Oyama, B. Watkins, F. Djuth, M. Kosch, P. Bernhardt, C. Heinselman, Persistent enhancement of the HF pump-induced plasma line measured with a UHF diagnostic radar at HAARP. J. Geophys. Res. 111, A06309 (2006). https://doi.org/10.1029/2005JA011363

    Article  ADS  Google Scholar 

  • K. Papadopoulos, H.-B. Zhou, C.-L. Chang, Cerenkov excitation of whistler/helicon waves by ionospheric HF heating. Geophys. Res. Lett. 21(17), 1767 (1994)

    ADS  Google Scholar 

  • K. Papadopoulos, T. Wallace, M. McCarrick, G.M. Milikh, X. Yang, On the efficiency of ELF/VLF generation using HF heating of the auroral electrojet. Plasma Phys. Rep. 29, 561 (2003)

    ADS  Google Scholar 

  • K. Papadopoulos, C.-L. Chang, J. Labenski, T. Wallace, First demonstration of HF driven ionospheric currents. Geophys. Res. Lett. 38, L20107 (2011b). https://doi.org/10.1029/2011GL049263

    Article  ADS  Google Scholar 

  • K. Papadopoulos, N. Gumerov, X. Shao, C.-L. Cheng, I. Doxas, HF driven current in the polar ionosphere. Geophys. Res. Lett. 38, L12103 (2011a). https://doi.org/10.1029/2011GL047368

    Article  ADS  Google Scholar 

  • T.R. Pedersen, H.C. Carlson, First observations of HF heater produced airglow at the High Frequency Active Auroral Research Program facility: thermal excitation and spatial structuring. Radio Sci. 36(5), 1013–1026 (2001). https://doi.org/10.1029/2000RS002399

    Article  ADS  Google Scholar 

  • T.R. Pedersen, E. Gerken, Creation of visible artificial optical emissions in the aurora by high-power radio waves. Nature 433, 498–500 (2005). https://doi.org/10.1038/nature03243

    Article  ADS  Google Scholar 

  • T. Pedersen, M. McCarrick, E. Gerken, C. Selcher, D. Sentman, H. Carlson, A. Gurevich, Magnetic zenith enhancement of HF radio-induced airglow production at HAARP. Geophys. Res. Lett. 30, 1169–1172 (2003). https://doi.org/10.1029/2002GL016096

    Article  ADS  Google Scholar 

  • T. Pedersen, R. Esposito, E. Kendall, D. Sentman, M. Kosch, E. Mishin, R. Marshall, Observations of artificial and natural optical emissions at the HAARP facility. Ann. Geophys. 26, 1089–1099 (2008)

    ADS  Google Scholar 

  • T. Pedersen, B. Gustavsson, E. Mishin, E. MacKenzie, H.C. Carlson, M. Starks, T. Mills, Optical ring formation and ionization production in high-power HF heating experiments at HAARP. Geophys. Res. Lett. 36, L18107 (2009). https://doi.org/10.1029/2009GL040047

    Article  ADS  Google Scholar 

  • T. Pedersen, B. Gustavsson, E. Mishin, E. Kendall, T. Mills, H.C. Carlson, A.L. Snyder, Creation of artificial ionospheric layers using high-power HF waves. Geophys. Res. Lett. 37, L02106 (2010). https://doi.org/10.1016/S0273-1177(02)00186-2

    Article  ADS  Google Scholar 

  • T. Pedersen, M. McCarrick, B. Reinisch, B. Watkins, R. Hamel, V. Paznukhov, Production of artificial ionospheric layers by frequency sweeping near the 2nd gyroharmonic. Ann. Geophys. 29, 47–51 (2011). https://doi.org/10.5194/angeo-29-47-2011

    Article  ADS  Google Scholar 

  • F.W. Perkins, A theoretical model for short-scale field-aligned plasma density striations. Radio Sci. 9(11), 1065–1070 (1974)

    ADS  Google Scholar 

  • D. Piddyachiy, U.S. Inan, T.F. Bell, N.G. Lehtinen, M. Parrot, DEMETER observations of an intense upgoing column of ELF/VLF radiation excited by the HAARP HF heater. J. Geophys. Res. 113, A10308 (2008). https://doi.org/10.1029/2008JA013208

    Article  ADS  Google Scholar 

  • S. Polyakov, V. Rapoport, The ionospheric Alfvén resonator. Geomagn. Aeron. 21, 816 (1981)

    ADS  Google Scholar 

  • P.V. Ponomarenko, T.B. Leyser, B. Thide, New electron gyroharmonic effects in HF scatter from pump-excited magnetic field-aligned ionospheric irregularities. J. Geophys. Res. 104(A5), 10,081–10,087 (1999)

    ADS  Google Scholar 

  • P.V. Ponomarenko, Yu.M. Yampolski, A.V. Zalizovsky, D. Hysell, O. Tyrnov, Interaction between artificial ionospheric irregularities and natural MHD waves. J. Geophys. Res. 105(A1), 171–181 (2000)

    ADS  Google Scholar 

  • R. Pradipta, M.C. Lee, J.F. Cohen, D.J. Watkins, Generation of artificial acoustic-gravity waves and traveling ionospheric disturbances in HF heating experiments. Earth Moon Planets (2015). https://doi.org/10.1007/s11038-015-9461-2

    Article  Google Scholar 

  • V.O. Rapoport, V.L. Frolov, S.V. Polyakov, G.P. Komrakov, N.A. Ryzhov, G.A. Markov, A.S. Belov, M. Parrot, J.-L. Rauch, VLF electromagnetic field structures in the ionosphere disturbed by SURA RF heating facility. J. Geophys. Res. 115, A10322 (2010). https://doi.org/10.1029/2010JA015484

    Article  ADS  Google Scholar 

  • B. Reinisch et al., First results from the Radio Plasma Imager on IMAGE. Geophys. Res. Lett. 28, 1167–1170 (2001). https://doi.org/10.1029/2000GL012398

    Article  ADS  Google Scholar 

  • F.J. Rich, M. Hairston, Large-scale convection patterns observed by DMSP. J. Geophys. Res. 79, 3827 (1994)

    ADS  Google Scholar 

  • M.T. Rietveld, P.N. Collis, J.-P.St. Maurice, Naturally enhanced ion-acoustic waves in the auroral ionosphere observed by the EISCAT 933 MHz radar. J. Geophys. Res. 96, 19291–19305 (1991)

    ADS  Google Scholar 

  • M.T. Rietveld, H. Kohl, H. Kopka, P. Stubbe, Introduction to ionospheric heating at Tromsø. Experimental overview. J. Atmos. Terr. Phys. 55, 577–599 (1993)

    ADS  Google Scholar 

  • M.T. Rietveld, B. Isham, H. Kohl, C. La Hoz, T. Hagfors, Measurements of HF-enhanced plasma and ion lines at EISCAT with high altitude resolution. J. Geophys. Res. 105(A4), 7429–7439 (2000)

    ADS  Google Scholar 

  • M.T. Rietveld, B. Isham, T. Grydeland, C. La Hoz, T.B. Leyser, F. Honary, H. Ueda, M. Kosch, T. Hagfors, HF-pump-induced parametric instabilities in the auroral E-region. Adv. Space Res. 29(9), 1363–1368 (2002)

    ADS  Google Scholar 

  • M.T. Rietveld, M.J. Kosch, N.F. Blagoveshchenskaya, V.A. Kornienko, T.B. Leyser, T.K. Yeoman, Ionospheric electron heating, optical emissions and striations induced by powerful HF radio waves at high latitudes: aspect angle dependence. J. Geophys. Res. 108(A4), 1141 (2003). https://doi.org/10.1029/2002JA009543

    Article  Google Scholar 

  • M.T. Rietveld, A. Senior, J. Markkanen, A. Westman, New capabilities of the upgraded EISCAT high-power HF facility. Radio Sci. 51 (2016). https://doi.org/10.1002/2016RS006093

  • T. Robinson, The heating of the high latitude ionosphere by high-power radio waves. Phys. Rep. 179, 79–209 (1989)

    ADS  Google Scholar 

  • T.R. Robinson, The Role of natural E-region plasma turbulence in the enhanced absorption of HF radio waves in the auroral ionosphere: Implications for RF heating of the auroral electrojet. Ann. Geophys. 12(4), 316–332 (1994)

    ADS  Google Scholar 

  • P. Robinson, Nonlinear wave collapse and strong turbulence. Rev. Mod. Phys. 69, 507–573 (1997)

    ADS  Google Scholar 

  • T.R. Robinson, F. Honary, A. Stocker, T.B. Jones, Factors influencing the heating of the auroral electrojet by high power radio waves. Adv. Space Res. 15(12), 41–44 (1995)

    ADS  Google Scholar 

  • T.R. Robinson, G. Bond, P. Eglitis, F. Honary, M.T. Rietveld, RF heating of a strong auroral electrojet. Adv. Space Res. 21(5), 689–692 (1998)

    ADS  Google Scholar 

  • T.R. Robinson, R. Strangeway, D.M. Wright, J.A. Davies, R.B. Horne, T.K. Yeoman, A.J. Stocker, M. Lester, M.T. Rietveld, I.R. Mann, C.W. Carlson, J.P. McFadden, FAST observations of ULF waves injected into the magnetosphere by means of modulated RF heating of the auroral electrojet. Geophys. Res. Lett. 27(19), 3165–3168 (2000)

    ADS  Google Scholar 

  • T.R. Robinson, T.K. Yeoman, R.S. Dhillon, M. Lester, E.C. Thomas, J.D. Thornhill, D.M. Wright, A.P. van Eyken, I. McCrea, First observations of SPEAR induced artificial backscatter from CUTLASS and the EISCAT Svalbard radar. Ann. Geophys. 24, 291–309 (2006)

    ADS  Google Scholar 

  • Yu. Ruzhin et al., On the possibility of localization of a substorm by using the SURA heating facility. Radiophys. Quantum Electron. 55(1–2), 85–94 (2012)

    ADS  Google Scholar 

  • R. Sagdeev, The 1976 Oppenheimer Lectures: Critical problems in plasma astrophysics. Rev. Mod. Phys. 51, 1–20 (1979)

    ADS  Google Scholar 

  • A. Samimi, W.A. Scales, P.A. Bernhardt, S.J. Briczinski, M.J. McCarrick, Ion gyroharmonic structures in stimulated radiation during second electron gyroharmonic heating, 1: theory. J. Geophys. Res. Space Phys. 118, 502–514 (2013). https://doi.org/10.1029/2012JA018146

    Article  ADS  Google Scholar 

  • A. Samimi, W.A. Scales, P.A. Bernhardt, S.J. Briczinski, M.J. McCarrick, Ion gyroharmonic structures in stimulated radiation during second electron gyroharmonic heating, 2: simulations. J. Geophys. Res. Space Phys. 119, 462–478 (2014). https://doi.org/10.1002/2013JA019341

    Article  ADS  Google Scholar 

  • J.C. Samson, D.D. Wallis, T.J. Hughes, F. Greutzberg, J.M. Ruohoniemi, R.A. Greenwald, Substorm intensifications and field line resonaces in the nightside magnetosphere. J. Geophys. Res. 97, 8495 (1992)

    ADS  Google Scholar 

  • J.-A. Sauvaud, T. Moreau, R. Maggiolo, J.-P. Treilhou, C. Jacquey, A. Cros, J. Coutelier, J. Rouzaud, E. Penou, M. Gangloff, High-energy electron detection onboard DEMETER: The IDP spectrometer, description and first results on the inner belt. Planet. Space Sci. 54, 502–511 (2006)

    ADS  Google Scholar 

  • M. Scherbarth, A. Adler, G. Ginet, Demonstration and Science Experiment (DSX) Mission, in Solar Physics and Space Weather Instrumentation III, ed. by S. Fineschi, J. Fennelly. Proc. of SPIE, vol. 7438 (2009), p. 74380B-1-10. https://doi.org/10.1117/12.824898

    Chapter  Google Scholar 

  • N.M. Schlatter, N. Ivchenko, B. Gustavsson, T. Leyser, M. Rietveld, Observations of HF induced instability in the auroral E region. Ann. Geophys. 31, 1103–1108 (2013). https://doi.org/10.5194/angeo-31-1103-2013

    Article  ADS  Google Scholar 

  • N.M. Schlatter, V. Belyey, B. Gustavsson, N. Ivchenko, D. Whiter, H. Dahlgren, S. Tuttle, T. Grydeland, Auroral ion acoustic wave enhancement observed with a radar interferometer system. Ann. Geophys. 33, 837–844 (2015). https://doi.org/10.5194/angeo-33-837-2015

    Article  ADS  Google Scholar 

  • W. Schumann, On the damping of electromagnetic self-oscillations in the system earth–air–ionosphere. Z. Naturforsch. 7(a2), 250149 (1952). https://doi.org/10.1515/zna-1952-0202 (in German)

    Article  ADS  Google Scholar 

  • H. Scoffield, T. Yeoman, T. Robinson, L. Baddeley, R. Dhillon, D. Wright, T. Raita, T. Turunen, First results of artificial stimulation of the ionospheric Alfvén resonator at 78 N. Geophys. Res. Lett. 33(L19), 103 (2006). https://doi.org/10.1029/2006GL027

    Article  Google Scholar 

  • K.J.F. Sedgemore-Schulthess, J.-P. St. Maurice, Naturally enhanced ion-acoustic spectra and their interpretation. Surv. Geophys. 22, 55–92 (2001)

    ADS  Google Scholar 

  • A. Senior, F. Honary, P.J. Chapman, M.T. Rietveld, T.S. Kelso, M.J. Kosch, High-frequency magnetospheric sounding at EISCAT: some trials and their implications. Radio Sci. 43, RS4009 (2008). https://doi.org/10.1029/2007RS003779

    Article  ADS  Google Scholar 

  • A. Senior, M.T. Rietveld, M.J. Kosch, W. Singer, Diagnosing radio plasma heating in the polar summer mesosphere using cross-modulation: Theory and observations. J. Geophys. Res. 115, A09318 (2010). https://doi.org/10.1029/2010JA015379

    Article  ADS  Google Scholar 

  • A. Senior, M.T. Rietveld, F. Honary, W. Singer, M.J. Kosch, Measurements and modelling of cosmic noise absorption changes due to radio heating of the D-region ionosphere. J. Geophys. Res. 116, A04310 (2011). https://doi.org/10.1029/2010JA016189

    Article  ADS  Google Scholar 

  • A. Senior, M.T. Rietveld, I. Haggstrom, M.J. Kosch, Radio-induced incoherent scatter ion line enhancements with wide altitude extents in the high-latitude ionosphere. Geophys. Res. Lett. 40(9), 1669–1674 (2013). https://doi.org/10.1002/grl.50272

    Article  ADS  Google Scholar 

  • A. Senior, A. Mahmoudian, H. Pinedo, C. La Hoz, M.T. Rietveld, W.A. Scales, M.J. Kosch, First modulation of high-frequency polar mesospheric summer echoes by radio heating of the ionosphere. Geophys. Res. Lett. 41(15), 5347–5353 (2014). https://doi.org/10.1002/2014GL060703

    Article  ADS  Google Scholar 

  • E.N. Sergeev et al., Exploring HF-induced ionospheric turbulence by Doppler sounding and stimulated electromagnetic emissions at HAARP heating facility. Radio Sci. 51 (2016). https://doi.org/10.1002/2015RS005936

  • E.N. Sergeev, V.L. Frolov, G.P. Komrakov, B. Thide, Temporal evolution of HF-excited plasma waves, measured at different pump frequencies by stimulated electromagnetic emission. J. Atmos. Sol.-Terr. Phys. 59(18), 2383–2400 (1997)

    ADS  Google Scholar 

  • E.N. Sergeev, V.L. Frolov, G.N. Boiko, G.P. Komrakov, Results of investigation of the Langmuir and upper hybrid plasma turbulence evolution by means of the stimulated ionospheric emission. Radiophys. Quantum Electron. 41(3), 206–228 (1998)

    ADS  Google Scholar 

  • E.N. Sergeev, S.M. Grach, G.P. Komrakov, V.L. Frolov, P. Stubbe, B. Thide, T.B. Leyser, T.D. Carozzi, Influence of small-scale irregularities on characteristics of the overshoot effect in the temporal evolution of stimulated electromagnetic emission. Part I. Development stage. Radiophys. Quantum Electron. 42(7), 544–556 (1999)

    ADS  Google Scholar 

  • E.N. Sergeev, S.M. Grach, P.V. Kotov, Study of the excitation conditions and characteristics of ionospheric plasma turbulence at the development stage of the pondermotive parametric instability. Radiophys. Quantum Electron. 47(3), 185–204 (2004)

    ADS  Google Scholar 

  • E.N. Sergeev, V.L. Frolov, S.M. Grach, P.V. Kotov, On the morphology of SEE spectral features in a wide pump wave frequency range. Adv. Space Res. 38(11), 2518–2526 (2006). https://doi.org/10.1016/j.asr.2005.02.046

    Article  ADS  Google Scholar 

  • E. Sergeev, S. Grach, A. Shindin, E. Mishin, P. Bernhardt, S. Briczinski, B. Isham, M. Broughton, J. LaBelle, B. Watkins, Artificial ionospheric layers during pump frequency stepping near the 4th gyroharmonic at HAARP. Phys. Rev. Lett. 110 (2013). https://doi.org/10.1134/S1028335814020074

  • E.N. Sergeev, S.M. Grach, V.L. Frolov, A.V. Shinding, Diagnostics of the generation, decay, and transfer of artificial plasma perturbations by means of short pulses of a high-power radio emission. Radiophys. Quantum Electron. 59(11), 876–887 (2017). https://doi.org/10.1007/s11141-017-9758-2

    Article  ADS  Google Scholar 

  • T. Sergienko, I. Kornilov, E. Belova et al., Optical effects in the aurora caused by ionospheric HF heating. J. Atmos. Sol.-Terr. Phys. 99(18), 2401–2407 (1997)

    ADS  Google Scholar 

  • T. Sergienko, B. Gustavsson, U. Brandstrom, K. Axelsson, Modelling of optical emissions enhanced by the HF pumping of the ionospheric F-region. Ann. Geophys. 30, 885–895 (2010). https://doi.org/10.5194/angeo-30-885-2012

    Article  ADS  Google Scholar 

  • V. Shapiro, V. Shevchenko, Strong turbulence of plasma oscillations, in Basic Plasma Physics, vol. 2, ed. by A. Galeev, R. Sudan (North-Holland, New York, 1984), pp. 123–182

    Google Scholar 

  • A.V. Shindin et al., The 630 nm and 557.7 nm airglow during HF ionosphere pumping by the SURA facility radiation for pump frequencies near the fourth electron gyroharmonic. Radiophys. Quantum Electron. 57(11), 759–772 (2015)

    ADS  Google Scholar 

  • M.M. Shvarts, S.M. Grach, E.N. Sergeev, V.L. Frolov, On the generation of the stimulated electromagnetic emission. The computer simulation results. Adv. Space Res. 15(12), 59–62 (1995)

    Google Scholar 

  • C.L. Siefring, P.A. Bernhardt, H.G. James, R.T. Parris, The CERTO beacon on CASSIOPE/e-POP and experiments using high-power HF ionospheric heaters. Space Sci. Rev. 189, 107–122 (2014). https://doi.org/10.1007/s11214-014-0110-2

    Article  ADS  Google Scholar 

  • F. Simoes, R. Pfaff, H. Freudenreich, Satellite observations of Schumann resonances in the Earth’s ionosphere. Geophys. Res. Lett. 38(L22), 101 (2011). https://doi.org/10.1029/2011GL049668

    Article  Google Scholar 

  • M. Starodubtsev, V. Nazarov, A. Kostrov, Laboratory study of nonlinear trapping of magnetized Langmuir waves inside a density depletion. Phys. Rev. Lett. 98, 195001 (2007). https://doi.org/10.1103/PhysRevLett.98.195001

    Article  ADS  Google Scholar 

  • A.V. Streltsov, T.R. Pedersen, An alternative method for generation of ULF waves by ionospheric heating. Geophys. Res. Lett. 37, L14101 (2010). https://doi.org/10.1029/2010GL043543

    Article  ADS  Google Scholar 

  • A.V. Streltsov, T.R. Pedersen, Excitation of zero-frequency magnetic field-aligned currents by ionospheric heating. Ann. Geophys. 29, 1147 (2011). https://doi.org/10.5194/angeo-29-1147-2011

    Article  ADS  Google Scholar 

  • A. Streltsov, W. Lotko, G. Milikh, Simulations of ULF field-aligned currents generated by HF heating of the ionosphere. J. Geophys. Res. 110, 629 (2005). https://doi.org/10.1029/2004JA010

    Article  Google Scholar 

  • A.V. Streltsov, T.R. Pedersen, E.V. Mishin, A.L. Snyder, Ionospheric feedback instability and substorm development. J. Geophys. Res. 115, A07205 (2010a). https://doi.org/10.1029/2009JA014961

    Article  ADS  Google Scholar 

  • A.V. Streltsov, M. Gołkowski, U.S. Inan, K.D. Papadopoulos, Propagation of whistler-mode waves with a modulated frequency in the magnetosphere. J. Geophys. Res. 115, A09209 (2010b). https://doi.org/10.1029/2009JA015155

    Article  ADS  Google Scholar 

  • A.V. Streltsov, C.-L. Chang, J. Labenski, G.M. Milikh, A. Vartanyan, A.L. Snyder, Excitation of the ionospheric Alfvén resonator from the ground: theory and experiments. J. Geophys. Res. 116, A10221 (2011). https://doi.org/10.1029/2011JA016680

    Article  ADS  Google Scholar 

  • A.V. Streltsov, T. Guido, B. Tulegenov, J. Labenski, C.-L. Chang, Artificial excitation of ELF waves with frequency of Schumann resonance. J. Atmos. Sol.-Terr. Phys. 119, 110 (2014). https://doi.org/10.1016/j.jastp.2014.07.004

    Article  ADS  Google Scholar 

  • P. Stubbe, Review of ionospheric modification experiments at Tromsø. J. Atmos. Terr. Phys. 58, 1–4 (1996). 349–368

    Google Scholar 

  • P. Stubbe, T. Hagfors, The Earth’s ionosphere: a wall-less plasma laboratory. Surv. Geophys. 18(1), 57–127 (1997)

    ADS  Google Scholar 

  • P. Stubbe, H. Kopka, Modulation of the polar electrojet by powerful HF waves. J. Geophys. Res. 82(16), 2319–2325 (1977)

    ADS  Google Scholar 

  • P. Stubbe, H. Kopka, Stimulated electromagnetic emission in a magnetized plasma: A new symmetrical spectral feature. Phys. Rev. Lett. 65(2), 183–186 (1990)

    ADS  Google Scholar 

  • P. Stubbe, H. Kopka, R.L. Dowden, Generation of ELF and VLF waves by polar electrojet modulation: Experimental results. J. Geophys. Res. 86(A11), 9073 (1981)

    ADS  Google Scholar 

  • P. Stubbe, H. Kopka, H. Lauche, M.T. Rietveld, A. Brekke, O. Holt, T.B. Jones, T. Robinson, A. Hedberg, B. Thidé, B. Crochet, H.-J. Lotz, Ionospheric modification experiments in northern Scandinavia. J. Atmos. Terr. Phys. 44(12), 1025–1041 (1982)

    ADS  Google Scholar 

  • P. Stubbe, H. Kopka, B. Thidé, H. Derblom, Stimulated electromagnetic emission: a new technique to study the parametric decay instability in the ionosphere. J. Geophys. Res. 89(A9), 7523–7536 (1984)

    ADS  Google Scholar 

  • P. Stubbe, H. Kopka, M.T. Rietveld, A. Frey, P. Hoeg, H. Kohl, E. Nielsen, G. Rose, C. LaHoz, R. Barr, H. Derblom, A. Hedberg, B. Thide, T.B. Jones, T. Robinson, A. Brekke, T. Hansen, O. Holt, Ionospheric modification experiments with the Tromsøheating facility. J. Atmos. Terr. Phys. 47(12), 1151–1163 (1985)

    ADS  Google Scholar 

  • P. Stubbe, A.J. Stocker, F. Honary, T.R. Robinson, T.B. Jones, Stimulated electromagnetic emissions (SEE) and anomalous HF wave absorption near electron gyroharmonics. J. Geophys. Res. 99, 6233–6246 (1994)

    ADS  Google Scholar 

  • B. Sturman, Interaction of potential oscillations in a magnetoactive plasma. Radiophys. Quantum Electron. 17, 1349–1355 (1974)

    ADS  Google Scholar 

  • M.P. Sulzer, J.D. Mathews, A.A. Tomko, A UHF cross-modulation D region heating experiment with aeronomic implications. Radio Sci. 17(2), 435–443 (1982)

    ADS  Google Scholar 

  • V. Surkov, N. Nosikova, A. Plyasov, V. Pilipenko, V. Ignatov, Penetration of Schumann resonances into the upper ionosphere. J. Atmos. Sol.-Terr. Phys. 97, 65 (2013)

    ADS  Google Scholar 

  • B.D.H. Tellegen, Interaction between radio waves. Nature 131, 840 (1933). https://doi.org/10.1038/131840a0

    Article  ADS  Google Scholar 

  • E.D. Tereshchenko, B.Z. Khudukon, A.V. Gurevich, K.P. Zybin, V.L. Frolov, E.N. Myasnikov, N.V. Muravieva, H.C. Carlson, Radio tomography and scintillation studies of ionospheric electron density modification caused by a powerful HF-wave and magnetic zenith effect at mid-latitudes. Phys. Lett. A 325, 381–388 (2004)

    ADS  Google Scholar 

  • B. Thidé, H. Kopka, P. Stubbe, Observations of stimulated scattering of a strong high frequency radio wave in the ionosphere. Phys. Rev. Lett. 49, 1561–1564 (1982). https://doi.org/10.1103/PhysRevLett.49.1561

    Article  ADS  Google Scholar 

  • G.D. Thome, D.W. Blood, First observations of RF backscatter from field-aligned irregularities produced by ionospheric heating. Radio Sci. 9(11), 917–921 (1974)

    ADS  Google Scholar 

  • V. Trakhtengertz, A.Y. Feldstein, Quiet auroral arcs: ionospheric effect of magnetospheric convection stratification. Planet. Space Sci. 32, 127 (1984)

    ADS  Google Scholar 

  • T.T. Tsuda, M.T. Rietveld, M.J. Kosch, S. Oyama, K. Hosokawa, S. Nozawa, T. Kawabata, A. Mizuno, Y. Ogawa, A survey of conditions for artificial aurora experiments at EISCAT Tromsø site using dynasonde data. Earth Planets Space 70, 40 (2018). https://doi.org/10.5194/angeo-36-243-2018

    Article  ADS  Google Scholar 

  • V.P. Uryadov, G.G. Vertogradov, V.G. Vertogradov, G.P. Komrakov, N. Cherkashin Yu, V.V. Vas’kov, Field-aligned scattering of HF radio waves under modification of the ionosphere by high-power oblique radio waves. Radiophys. Quantum Electron. 50(8), 611–618 (2007)

    ADS  Google Scholar 

  • A. Vartanyan, G.M. Milikh, E. Mishin, M. Parrot, I. Galkin, B. Reinisch, J. Huba, G. Joyce, K. Papadopoulos, Artificial ducts caused by HF heating of the ionosphere by HAARP. J. Geophys. Res. 117, A10307 (2012). https://doi.org/10.1029/2012JA017563

    Article  ADS  Google Scholar 

  • A. Vartanyan, G.M. Milikh, B. Eliasson, A.C. Najmi, M. Parrot, K. Papadopoulos, Generation of whistler waves by continuous HF heating of the upper ionosphere. Radio Sci. 51, 1188 (2016). https://doi.org/10.1002/2015RS005892

    Article  ADS  Google Scholar 

  • V.V. Vas’kov, N.I. Bud’ko, O.V. Kapustina, Y.M. Mikhailov, N.A. Ryabova, G.L. Gdalevich, G.P. Komrakov, A.N. Maresov, Detection on the INTERCOSMOS-24 satellite of VLF and ELF waves stimulated in the topside ionosphere by the heating facility SURA. J. Atmos. Sol.-Terr. Phys. 60(12), 1261–1274 (1998). https://doi.org/10.1016/S1364-6826(98)00054-6

    Article  ADS  Google Scholar 

  • J. Vierinen, A. Kero, M.T. Rietveld, High latitude artificial periodic irregularity observations with the upgraded EISCAT heating facility. J. Atmos. Sol.-Terr. Phys. 105–106, 253–261 (2013)

    ADS  Google Scholar 

  • M.N. Vlasov, M.C. Kelley, D.L. Hysell, The main types of electron energy distribution determined by model fitting to optical emissions during HF wave ionospheric modification experiments. J. Geophys. Res. 118, 3877–3890 (2013). https://doi.org/10.1002/jgra.50364

    Article  Google Scholar 

  • A. Volokitin, C. Krafft, Wave decay processes in a weakly magnetized plasma. Phys. Lett. A 336, 193–198 (2005)

    ADS  Google Scholar 

  • A. Volokitin, E. Mishin, Relaxation of an electron beam in a plasma with infrequent collisions. Sov. J. Plasma Phys. 5, 654 (1979)

    ADS  Google Scholar 

  • J. Wang, D. Newman, M. Goldman, Vlasov simulations of electron heating by Langmuir turbulence near the critical altitude in the radiation-modified ionosphere. J. Atmos. Sol.-Terr. Phys. 59, 2461 (1997). https://doi.org/10.1016/S1364-6826(96)00140-X

    Article  ADS  Google Scholar 

  • A.Y. Wong, J. Carroll, R. Dickman, W. Harrison, W. Huhn, B. Lure, M. McCarrick, J. Santoru, C. Schock, G. Wong, R.F. Wuerker, High-power radiating facility at the HIPAS Observatory. Radio Sci. 25(6), 1269–1282 (1990)

    ADS  Google Scholar 

  • D.M. Wright, J.A. Davies, T.K. Yeoman, T. Robinson, S.R. Cash, E. Kolesnikova, M. Lester, P.J. Chapman, R.J. Strangeway, R.B. Horne, M.T. Rietveld, C.W. Carlson, Detection of artificially generated ULF waves by the FAST spacecraft and its application to the “tagging” of narrow flux tubes. J. Geophys. Res. 108(A2), 1090 (2003). https://doi.org/10.1029/2002JA009483

    Article  Google Scholar 

  • H. Xi, W. Scales, Numerical simulation studies on the broad upshifted maximum of ionospheric stimulated electromagnetic emission. J. Geophys. Res. 106, 12,787 (2001). https://doi.org/10.1029/2000JA000322

    Article  ADS  Google Scholar 

  • N.A. Zabotin, E.S. Kovalenko, Simple numerical model of radio wave multiple scattering effects in the ionospheric plasma layer. Waves Random Media 9(3), 393–399 (1999). https://doi.org/10.1088/0959-7174/9/3/307

    Article  ADS  MATH  Google Scholar 

  • V. Zakharov, Collapse and self-focusing of Langmuir waves, in Basic Plasma Physics, vol. 2, ed. by A. Galeev, R. Sudan (North-Holland, New York, 1984), pp. 81–121

    Google Scholar 

  • H.L. Zhou, J. Huang, S.P. Kuo, Cascading of the upper hybrid/electron Bernstein wave in ionospheric heating experiments. Phys. Plasmas 1, 3044–3052 (1994)

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge fruitful discussion of active experiments and heating facilities with H.C. Carlson, M. Cohen, M. Golkowski, S. Grach, M.M. Mogilevsky, E. Nossa, K.D. Papadopoulos, T. Pedersen, B. Watkins.

This work was made possible by the ISSI funding of the international scince team “Past, Present and Future of Active Experiments in Space” and supported in part through CNES grant DEMETER 2874949; US National Academy of Sciences; Air Force Office of Scientific Research; Russian Education Ministry project 3.1844.2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Streltsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Streltsov, A.V., Berthelier, JJ., Chernyshov, A.A. et al. Past, Present and Future of Active Radio Frequency Experiments in Space. Space Sci Rev 214, 118 (2018). https://doi.org/10.1007/s11214-018-0549-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-018-0549-7

Keywords

Navigation