Skip to main content
Log in

Geology and Physical Properties Investigations by the InSight Lander

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Although not the prime focus of the InSight mission, the near-surface geology and physical properties investigations provide critical information for both placing the instruments (seismometer and heat flow probe with mole) on the surface and for understanding the nature of the shallow subsurface and its effect on recorded seismic waves. Two color cameras on the lander will obtain multiple stereo images of the surface and its interaction with the spacecraft. Images will be used to identify the geologic materials and features present, quantify their areal coverage, help determine the basic geologic evolution of the area, and provide ground truth for orbital remote sensing data. A radiometer will measure the hourly temperature of the surface in two spots, which will determine the thermal inertia of the surface materials present and their particle size and/or cohesion. Continuous measurements of wind speed and direction offer a unique opportunity to correlate dust devils and high winds with eolian changes imaged at the surface and to determine the threshold friction wind stress for grain motion on Mars. During the first two weeks after landing, these investigations will support the selection of instrument placement locations that are relatively smooth, flat, free of small rocks and load bearing. Soil mechanics parameters and elastic properties of near surface materials will be determined from mole penetration and thermal conductivity measurements from the surface to 3–5 m depth, the measurement of seismic waves during mole hammering, passive monitoring of seismic waves, and experiments with the arm and scoop of the lander (indentations, scraping and trenching). These investigations will determine and test the presence and mechanical properties of the expected 3–17 m thick fragmented regolith (and underlying fractured material) built up by impact and eolian processes on top of Hesperian lava flows and determine its seismic properties for the seismic investigation of Mars’ interior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • H. Abarca, R. Deen, G. Hollins, P. Zamani, O. Pariser, J. Maki, F. Ayoub, A. Tinio, N. Toole, S. Algermissen, T. Soliman, Y. Lu, M. Golombek, F. Calef III., K. Grimes, Image and data processing for InSight lander operations and science. Space Sci. Rev. (2018, this issue)

  • K.A. Alshibli, A. Hasan, Strength properties of JSC-1A lunar regolith simulant. J. Geotech. Geoenviron. Eng. 135(5), 673–679 (2009)

    Google Scholar 

  • R.E. Arvidson, R.C. Anderson, P. Bartlett, J.F. Bell III, D. Blaney, P.R. Christensen, P. Chu, L. Crumpler, K. Davis, B.L. Ehlmann, R. Fergason, M.P. Golombek et al., Localization and physical properties experiments conducted by Spirit at Gusev crater. Science 305(5685), 821–824 (2004a). https://doi.org/10.1126/science.1099922

    ADS  Google Scholar 

  • R.E. Arvidson, R.C. Anderson, P. Bartlett, J.F. Bell III, P.R. Christensen, P. Chu, K. Davis, B.L. Ehlmann, M.P. Golombek et al., Localization and physical properties experiments conducted by Opportunity at Meridiani Planum. Science 306(5702), 1730–1733 (2004b). https://doi.org/10.1126/science.1104211

    ADS  Google Scholar 

  • R. Arvidson, D. Adams, G. Bonfiglio, P. Christensen, S. Cull, M. Golombek, J. Guinn, E. Guinness, T. Heet, R. Kirk, A. Knudson, M. Malin, M. Mellon, A. McEwen, A. Mushkin, T. Parker, F. Seelos, K. Seelos, P. Smith, D. Spencer, T. Stein, L. Tamppari, Mars Exploration Program 2007 Phoenix landing site selection and characteristics. J. Geophys. Res., Planets 113, E00A03 (2008). https://doi.org/10.1029/2007JE003021

    ADS  Google Scholar 

  • R.E. Arvidson et al., Terrain physical properties derived from orbital data and the first 360 sols of Mars Science Laboratory Curiosity rover observations in Gale Crater. J. Geophys. Res., Planets 119, 1322–1344 (2014). https://doi.org/10.1002/2013JE004605

    ADS  Google Scholar 

  • J.H. Atkinson, G. Sallfors, Experimental determination of soil properties. General Report to Session 1, in Proceedings of the 10th ECSMFE, Florence 3 (1991), pp. 915–956

    Google Scholar 

  • F. Ayoub, J.P. Avouac, C.E. Newman, M.I. Richardson, A. Lucas, S. Leprince, N.T. Bridges, Threshold for sand mobility on Mars calibrated from seasonal variations of sand flux, in Eighth International Conference on Mars, Pasadena, CA, July 14–18, 2014 (Lunar and Planetary Institute, Houston, 2014). Abstract #1064

    Google Scholar 

  • C. Bagaini, C. Barajas-Olalde, Assessment and compensation of inconsistent coupling conditions in point-receiver land seismic data. Geophys. Prospect. 55, 39–48 (2007). https://doi.org/10.1111/j.1365-2478.2006.00606.x

    ADS  Google Scholar 

  • R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, New York, 1941)

    Google Scholar 

  • J.L. Bandfield, R.R. Ghent, A.R. Vasavada, D.A. Paige, S.J. Lawrence, M.S. Robinson, Lunar surface rock abundance and regolith fines temperatures derived from LRO Diviner Radiometer data. J. Geophys. Res., Planets 116, 18 (2011). https://doi.org/10.1029/2011je003866

    Google Scholar 

  • W.B. Banerdt et al., The InSight Mission. Space Sci. Rev. (2018, this issue)

  • D. Banfield et al., The Auxiliary Payload Sensor Suite on InSight. Space Sci. Rev. (2018, this issue)

  • A. Becker, C. Vrettos, Tests on the thermal conductivity of regolith quasi-analogues at different porosities, in Earth and Space 2016, 15th ASCE International Conference on Engineering, Science, Construction and Operations in Challenging Environments (2016)

    Google Scholar 

  • R.A. Beyer, Meter-scale slopes of candidate InSight landings sites from point photoclinometry. Space Sci. Rev. 211, 97–107 (2017). https://doi.org/10.1007/s11214-016-0287-7

    ADS  Google Scholar 

  • A.B. Binder, R.E. Arvidson, E.A. Guinness et al., The geology of the Viking Lander 1 site. J. Geophys. Res. 82, 4439–4451 (1977)

    ADS  Google Scholar 

  • J.E. Bleacher, T.R. Orr, A.P. de Wet, J.R. Zimbelman, C.W. Hamilton, W.B. Garry, L.S. Crumpler, D.A. Williams, Plateaus and sinuous ridges as the fingerprints of lava flow inflation in the Eastern Tharsis Plains of Mars. J. Volcanol. Geotherm. Res. 342, 29–46 (2017). https://doi.org/10.1016/j.jvolgeores.2017.03.025

    ADS  Google Scholar 

  • C. Bloom, M. Golombek, N. Warner, N. Wigton, Size frequency distribution and ejection velocity of Corinto crater secondaries in Elysium Planitia, in Eighth International Conference on Mars, Pasadena, CA, July 14–18, 2014, (Lunar and Planetary Institute, Houston, 2014). Abstract #1289

    Google Scholar 

  • N.T. Bridges, F. Ayoub, J-P. Avouac, S. Leprince, A. Lucas, S. Mattson, Earth-like sand fluxes on Mars. Nature 485, 339–342 (2012)

    ADS  Google Scholar 

  • N. Bridges, P. Geissler, S. Silvestro, M. Banks, Bedform migration on Mars: current results and future plans. Aeolian Res. 9, 133–151 (2013)

    ADS  Google Scholar 

  • W.D. Carrier, J.K. Mitchell, A. Mahmood, The relative density of lunar soil, in Proc. Lunar Sci. Conf., 4th, vol. 4 (1973), pp. 118–120

    Google Scholar 

  • M.A. Carrigy, Experiments on the angles of repose of granular materials. Sedimentology 14(3–4), 147–158 (1970)

    ADS  Google Scholar 

  • D.C. Catling et al., A lava sea in the northern plains of Mars: circumpolar Hesperian oceans reconsidered, in 42nd Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, 2011). Abstract #2529

    Google Scholar 

  • D.C. Catling et al., Does the Vastitas Borealis formation contain oceanic or volcanic deposits? in Third Conference on Early Mars, Lake Tahoe, NV, May 21–25, 2012 (Lunar and Planetary Institute, Houston, 2012). Abstract #7031

    Google Scholar 

  • T.E. Chamberlain, H.L. Cole, R.G. Dutton, G.C. Greene, J.E. Tillman, Atmospheric measurements of Mars: the Viking meteorology experiment. Bull. Am. Meteorol. Soc. 57, 1094–1104 (1976)

    ADS  Google Scholar 

  • C. Charalambous, On the evolution of particle fragmentation with applications to planetary surfaces. Ph.D. Thesis (Imperial College, London, 2015)

  • C. Charalambous, W.T. Pike, M.P. Golombek, Estimating the grain size distribution of Mars based on fragmentation theory and observations, in 2017 Fall AGU Meeting, 11–15 Dec., New Orleans, LA (2017). Abstract P41C-2843

    Google Scholar 

  • M. Chojnacki, J.R. Johnson, J.E. Moersch, L.K. Fenton, T.I. Michaels, J.F. Bell III, Persistent aeolian activity at Endeavour crater, Meridiani Planum, Mars; new observations from orbit and the surface. Icarus 251, 275–290 (2015)

    ADS  Google Scholar 

  • P.R. Christensen, The spatial distribution of rocks on Mars. Icarus 68, 217–238 (1986)

    ADS  Google Scholar 

  • P.R. Christensen, H.J. Moore, The martian surface layer, in MARS, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 686–727

    Google Scholar 

  • P.R. Christensen, B.M. Jakosky, H.H. Kieffer, M.C. Malin, H.Y. McSween Jr., K. Nealson, G.L. Mehall, S.H. Silverman, S. Ferry, M. Caplinger, M. Ravine, The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 110, 85–130 (2004)

    ADS  Google Scholar 

  • P. Claudin, B. Andreotti, A scaling low for aeolian dunes on Mars, Venus, Earth and for subaqueous ripples. Earth Planet. Sci. 252, 30–44 (2006)

    ADS  Google Scholar 

  • J.F. Clinton, D. Giardini, P. Lognonné, B. Banerdt, M. van Driel, M. Drilleau, N. Murdoch, M. Panning, R. Garcia, D. Mimoun, M. Golombek, J. Tromp, R. Weber, M. Böse, S. Ceylan, I. Daubar, B. Kenda, A. Khan, L. Perrin, A. Spiga, Preparing for InSight: an invitation to participate in a blind test for Martian seismicity. Seismol. Res. Lett. 88, 1290–1302 (2017). https://doi.org/10.1785/0220170094

    Google Scholar 

  • J.F. Clinton et al., Marsquake Service—building a Martian seismicity catalogue for InSight. Space Sci. Rev. (2018, this issue)

  • S. Courrech du Pont, C. Narteau, X. Gao, Two modes for dune orientation. Geology 42, 743–746 (2014)

    ADS  Google Scholar 

  • R.A. Craddock, M.P. Golombek, Characteristics of terrestrial basaltic rock populations: implications for Mars lander and rover science and safety. Icarus 274, 50–72 (2016). https://doi.org/10.1016/j.icarus.2016.02.042

    ADS  Google Scholar 

  • I.J. Daubar, A.S. McEwen, M.P. Golombek, Albedo changes at Martian landing sites, in 46th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2015). Abstract #2225

    Google Scholar 

  • I.J. Daubar, C.M. Dundas, S. Byrne, P. Geissler, G.D. Bart, A.S. McEwen, P.S. Russell, M. Chojnacki, M.P. Golombek, Changes in blast zone albedo patterns around new martian impact craters. Icarus 267, 86–105 (2016). https://doi.org/10.1016/j.icarus.2015.11.032

    ADS  Google Scholar 

  • I.J. Daubar et al., Impact-seismic investigations of the InSight mission. Space Sci. Rev. (2018, this issue)

  • P. Delage, F. Karakostas, A. Dhemaied, M. Belmokhtar, P. Lognonné, M. Golombek, E. De Laure, K. Hurst, J.-C. Dupla, S. Kedar, Y.J. Cui, B. Banerdt, An investigation of the mechanical properties of some Martian regolith simulants with respect to the surface properties at the InSight mission landing site. Space Sci. Rev. 211, 191–213 (2017). https://doi.org/10.1007/s11214-017-0339-7

    ADS  Google Scholar 

  • L. Drube et al., Magnetic and optical properties of airborne dust and settling rates of dust at the Phoenix landing site. J. Geophys. Res. 115, E00E23 (2010). https://doi.org/10.1029/2009JE003419

    Google Scholar 

  • C.S. Edwards, K.J. Nowicki, P.R. Christensen, J. Hill, N. Gorelick, K. Murray, Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. J. Geophys. Res. 116, E10008 (2011). https://doi.org/10.1029/2010je003755

    ADS  Google Scholar 

  • B.L. Ehlmann et al., Chemistry, mineralogy, and grain properties at Namib and high dunes, Bagnold dune field, Gale crater, Mars: a synthesis of curiosity rover observations. J. Geophys. Res., Planets 122, 2510–2543 (2018). https://doi.org/10.1002/2017JE005267

    ADS  Google Scholar 

  • L. Fayon et al., A numerical model of the SEIS leveling system transfer matrix and resonances: Application to SEIS rotational seismology and dynamic ground interaction. Space Sci. Rev. (2018, in review, this issue)

  • R.L. Fergason, P.R. Christensen, J.F. Bell III, M.P. Golombek, K.E. Herkenhoff, H.H. Kieffer, Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES derived thermal inertia. J. Geophys. Res. 111(E2), E02S21 (2006). https://doi.org/10.1029/2005JE002583

    ADS  Google Scholar 

  • R. Fergason, R.L. Kirk, G. Cushing, D.M. Galuzska, M.P. Golombek, T.M. Hare, E. Howington-Kraus, D.M. Kipp, B.L. Redding, Analysis of local slopes at the InSight landing site on Mars. Space Sci. Rev. 211, 109–133 (2017). https://doi.org/10.1007/s11214-016-0292-x

    ADS  Google Scholar 

  • L. Fernandez-Cascales, A. Lucas, S. Rodriguez, X. Gao, A. Spiga, C. Narteau, First quantification of relationship between dune orientation and sediment availability, Olympia Undae, Mars. Earth Planet. Sci. Lett. 489, 241–250 (2018). https://doi.org/10.1016/j.epsl.2018.03.001

    ADS  Google Scholar 

  • W. Folkner, V. Dehant, S. Le Maistre, M. Yseboodt, A. Rivoldini, T. Van Hoolst, S.W. Asmar, M.P. Golombek, The Rotation and Interior Structure Experiment on the InSight Mission to Mars. Space Sci. Rev. (2018, this issue)

  • H.V. Frey, Impact constraints on, and a chronology for, major events in early Mars history. J. Geophys. Res. 111, E08S91 (2006). https://doi.org/10.1029/2005JE002449

    ADS  Google Scholar 

  • X. Gao, C. Narteau, O. Rozier, S. Courrech du Pont, Phase diagrams of dune shape and orientation depending on sand availability. Sci. Rep. 5, 14677 (2015)

    ADS  Google Scholar 

  • E. Gardin, P. Allemand, C. Quantin, S. Silvestro, C. Delacourt, Dune fields on Mars: recorders of a climate change? Planet. Space Sci. 60, 314–321 (2012)

    ADS  Google Scholar 

  • J.B. Garvin, P.J. Mouginis-Mark, J.W. Head, Characterization of rock populations on planetary surfaces: techniques and a preliminary analysis of Mars and Venus. Moon Planets 24, 355–387 (1981)

    ADS  Google Scholar 

  • J.B. Garvin, S.E.H. Sakamoto, C. Schnetzler, J.J. Frawley, Craters on Mars: global geometric properties from gridded MOLA topography, in 6th International Conference on Mars, 20–25 July (California Institute of Technology, Pasadena, 2003). Abs. #3277

    Google Scholar 

  • W. Goetz et al., Microscopy analysis of soils at the Phoenix landing site, Mars: classification of soil particles and description of their optical and magnetic properties. J. Geophys. Res. 115, E00E22 (2010). https://doi.org/10.1029/2009JE003437

    Google Scholar 

  • M.P. Golombek, N.T. Bridges, Erosion rates on Mars and implications for climate change: constraints from the Pathfinder landing site. J. Geophys. Res., Planets 105(E1), 1841–1853 (2000). https://doi.org/10.1029/1999JE001043

    ADS  Google Scholar 

  • M.P. Golombek, R.J. Phillips, Mars tectonics, in Planetary Tectonics, ed. by T.R. Watters, R.A. Schultz (Cambridge University Press, Cambridge, 2010), pp. 183–232. Chap. 5

    Google Scholar 

  • M.P. Golombek, J.B. Plescia, B.J. Franklin, Faulting and folding in the formation of planetary wrinkle ridges, in Proc. Lunar Planet. Sci. Conf, vol. 21 (1991), pp. 679–693

    Google Scholar 

  • M.P. Golombek, R.A. Cook, T. Economou, W.M. Folkner, A.F.C. Haldemann, P.H. Kallemeyn, J.M. Knudsen, R.M. Manning, H.J. Moore, T.J. Parker, R. Rieder, J.T. Schofield, P.H. Smith, R.M. Vaughan, Overview of the Mars Pathfinder mission and assessment of landing site predictions. Science 278, 1743–1748 (1997a)

    ADS  Google Scholar 

  • M.P. Golombek, R.A. Cook, H.J. Moore, T.J. Parker, Selection of the Mars Pathfinder landing site. J. Geophys. Res. 102, 3967–3988 (1997b)

    ADS  Google Scholar 

  • M.P. Golombek et al., Overview of the Mars Pathfinder mission: launch through landing, surface operations, data sets, and science results. J. Geophys. Res. 104, 8523–8553 (1999a)

    ADS  Google Scholar 

  • M.P. Golombek, H.J. Moore, A.F.C. Haldemann, T.J. Parker, J.T. Schofield, Assessment of Mars Pathfinder landing site predictions. J. Geophys. Res. 104, 8585–8594 (1999b)

    ADS  Google Scholar 

  • M.P. Golombek et al., Selection of the Mars Exploration Rover landing sites. J. Geophys. Res. 108(E12), 8072 (2003a). https://doi.org/10.1029/2003JE002074

    Google Scholar 

  • M.P. Golombek, A.F.C. Haldemann, N.K. Forsberg-Taylor, E.N. DiMaggio, R.D. Schroeder, B.M. Jakosky, M.T. Mellon, J.R. Matijevic, Rock size-frequency distributions on Mars and implications for Mars Exploration Rover landing safety and operations. J. Geophys. Res. 108(E12), 8086 (2003b). https://doi.org/10.1029/2002JE002035

    Google Scholar 

  • M.P. Golombek et al., Assessment of Mars Exploration Rover landing site predictions. Nature 436, 44–48 (2005). https://doi.org/10.1038/nature03600

    ADS  Google Scholar 

  • M.P. Golombek et al., Geology of the Gusev cratered plains from the Spirit rover traverse. J. Geophys. Res. 110, E02S07 (2006a). https://doi.org/10.1029/2005JE002503

    Google Scholar 

  • M.P. Golombek, J.A. Grant, L.S. Crumpler, R. Greeley, R.E. Arvidson, J.F. Bell III, C.M. Weitz, R. Sullivan, P.R. Christensen, L.A. Soderblom, S.W. Squyres, Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars. J. Geophys. Res., Planets 111, E12S10 (2006b). https://doi.org/10.1029/2006JE002754

    ADS  Google Scholar 

  • M.P. Golombek, A.F.C. Haldemann, R.A. Simpson, R.L. Fergason, N.E. Putzig, R.E. Arvidson, J.F. Bell III, M.T. Mellon, Martian surface properties from joint analysis of orbital, Earth-based, and surface observations, in The Martian Surface: Composition, Mineralogy and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008a), pp. 468–497. Chap. 21

    Google Scholar 

  • M.P. Golombek et al., Size-frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces. J. Geophys. Res. 113, E00A09 (2008b). https://doi.org/10.1029/2007JE003065

    Google Scholar 

  • M. Golombek, K. Robinson, A. McEwen, N. Bridges, B. Ivanov, L. Tornabene, R. Sullivan, Constraints on ripple migration at Meridiani Planum from Opportunity and HiRISE observations of fresh craters. J. Geophys. Res. 115, E00F08 (2010). https://doi.org/10.1029/2010JE003628

    ADS  Google Scholar 

  • M. Golombek, J. Grant, D.D. Kipp, A. Vasavada, R. Kirk, R. Fergason, P. Bellutta, F. Calef, K. Larsen, Y. Katayama, A. Huertas, R. Beyer, A. Chen, T. Parker, B. Pollard, S. Lee, R. Hoover, H. Sladek, J. Grotzinger, R. Welch, E. Noe Dobrea, J. Michalski, M.M. Watkins, Selection of the Mars Science Laboratory landing site. Space Sci. Rev. 170, 641–737 (2012a). https://doi.org/10.1007/s11214-012-9916-y

    ADS  Google Scholar 

  • M. Golombek, A. Huertas, D. Kipp, F. Calef, Detection and characterization of rocks and rock size-frequency distributions at the final four Mars Science Laboratory landing sites. Mars 7, 1–22 (2012b). https://doi.org/10.1555/mars.2012.0001

    ADS  Google Scholar 

  • M.P. Golombek, N.H. Warner, V. Ganti, M.P. Lamb, T.J. Parker, R.L. Fergason, R. Sullivan, Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars. J. Geophys. Res., Planets 119, 2522–2547 (2014). https://doi.org/10.1002/2014JE004658

    ADS  Google Scholar 

  • M. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R. Kirk, R. Beyer, A. Huertas, S. Piqueux, N.E. Putzig, B.A. Campbell, G.A. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, D. Kass, M. Mischna, J. Ashley, C. Bloom, N. Wigton, T. Hare, C. Schwartz, H. Gengl, L. Redmond, M. Trautman, J. Sweeney, C. Grima, I.B. Smith, E. Sklyanskiy, M. Lisano, J. Benardini, S. Smrekar, P. Lognonné, W.B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. 211, 5–95 (2017). https://doi.org/10.1007/s11214-016-0321-9

    ADS  Google Scholar 

  • M.P. Golombek, C. Charalambous, W.T. Pike, R. Sullivan, The origin of sand on Mars, in 49th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2018). Abstract #2319

    Google Scholar 

  • J. Gomez-Elvira, C. Armiens, L. Castaner, M. Dominguez, M. Genzer, F. Gomez, R. Haberle, A.-M. Harri, V. Jimenez, H. Kahanpaa, L. Kowalski, A. Lepinette, J. Martin, J. Martinez-Frias, I. McEwan, L. Mora, J. Moreno et al., REMS: the environmental sensor suite for the Mars Science Laboratory Rover. Space Sci. Rev. 170, 583–640 (2012)

    ADS  Google Scholar 

  • S. Goossens, T.J. Sabaka, A. Genova, E. Mazarico, J.B. Nicholas, G.A. Neumann, Evidence for a low bulk crustal density for Mars from gravity and topography. Geophys. Res. Lett. 44, 7686–7694 (2017). https://doi.org/10.1002/2017GL074172

    ADS  Google Scholar 

  • R. Greeley, J.D. Iversen, Wind as a Geological Process on Earth, Mars, Venus and Titan. Cambridge Planetary Science Series, vol. 4 (Cambridge Univ. Press, Cambridge, 1985)

    Google Scholar 

  • R. Greeley, A. Skypeck, J.B. Pollack, Martian aeolian features and deposits—comparisons with general circulation model results. J. Geophys. Res. 98, 3183–3196 (1993)

    ADS  Google Scholar 

  • R. Greeley, N.T. Bridges, R.O. Kuzmin, J.E. Laity, Terrestrial analogs to wind-related features at the Viking and Pathfinder landing sites on Mars. J. Geophys. Res. 107(E1), E5005 (2002)

    ADS  Google Scholar 

  • T.K.P. Gregg, Patterns and processes: Subaerial lava flow morphologies: a review. J. Volcanol. Geotherm. Res. 342, 3–12 (2017). https://doi.org/10.1016/j.jvolgeores.2017.04.022

    ADS  Google Scholar 

  • M. Grott, Thermal disturbances caused by lander shadowing and the measurability of the martian planetary heat flow. Planet. Space Sci. 57, 71–77 (2009)

    ADS  Google Scholar 

  • M. Grott, J. Helbert, R. Nadalini, Thermal structure of Martian soil and the measurability of the planetary heat flow. J. Geophys. Res. 112, E09004 (2007)

    ADS  Google Scholar 

  • T.V. Gudkova, P. Lognonné, J. Gagnepain-Beyneix, Large impacts detected by the Apollo seismometers: impactor mass and source cutoff frequency estimation. Icarus 211, 1049–1065 (2011)

    ADS  Google Scholar 

  • T. Gudkova, P. Lognonné, K. Miljkovic, J. Gagnepain-Beyneix, Impact cut-off frequency-momentum scaling law inverted from Apollo seismic data. Earth Planet. Sci. Lett. 427, 57–65 (2015). https://doi.org/10.1016/j.epsl.2015.06.037

    ADS  Google Scholar 

  • V.E. Hamilton, A.R. Vasavada, E. Sebastián, M. de la Torre Juárez, M. Ramos et al., Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater. J. Geophys. Res., Planets 119, 745–770 (2014). https://doi.org/10.1002/2013JE004520

    ADS  Google Scholar 

  • M. Hamm, M. Grott, E. Kührt et al., A method to derive surface thermophysical properties of asteroid (162173) Ryugu (1999JU3) from in-situ surface brightness temperature measurements. Planet. Space Sci. (2018, submitted)

  • H. Hansen-Goos, M. Grott, R. Lichtenheld et al., Predicted penetration performance of the InSight HP3 mole, in Lunar and Planetary Science Conference, 45 (2014). Abstract #1325

    Google Scholar 

  • B.A. Hardage, Vertical seismic profiling: principles, in Handbook of Geophysical Exploration. Seismic Exploration, vol. 14 (Pergamon, Elmsford, 2000)

    Google Scholar 

  • W.K. Hartmann, A.J. de la Casa, M. Berman, D.D. Ryan, E. Martian, Cratering 7: the role of impact gardening. Icarus 149, 37–53 (2001)

    ADS  Google Scholar 

  • L.A. Haskin et al., Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater. Nature 436, 66–69 (2005). https://doi.org/10.1038/nature03640

    ADS  Google Scholar 

  • R.K. Hayward, K.F. Mullins, L.K. Fenton, T.M. Hare, T.N. Titus, M.C. Bourke, A. Colaprete, P.R. Christensen, Mars Global Digital Dune Database and initial science results. J. Geophys. Res. 112, E11007 (2007). https://doi.org/10.1029/2007JE002943

    ADS  Google Scholar 

  • J.W. Head, M.A. Kreslavsky, S. Pratt, Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian period. J. Geophys. Res. 107(E1), 1–29 (2002). https://doi.org/10.1029/2000JE001445

    Google Scholar 

  • E. Hébrard, C. Listowski, P. Coll, B. Marticorena, G. Bergametti, A. Määttänen, F. Montmessin, F. Forget, An aerodynamic roughness length map derived from extended Martian rock abundance data. J. Geophys. Res. 117, E04008 (2012). https://doi.org/10.1029/2011JE003942

    ADS  Google Scholar 

  • T.L. Heet, R.E. Arvidson, S.C. Cull, M.T. Mellon, K.D. Seelos, Geomorphic and geologic settings of the Phoenix lander mission landing site. J. Geophys. Res. 114, E00E04 (2009). https://doi.org/10.1029/2009JE003416

    ADS  Google Scholar 

  • K.E. Herkenhoff, M.P. Golombek, E.A. Guiness, J.B. Johnson, A. Kusack, L. Richter, R.J. Sullivan, S. Gorevan, In situ observations of the physical properties of the martian surface, in The Martian Surface: Composition, Mineralogy and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008), pp. 451–467. Chap. 20

    Google Scholar 

  • M. Hobiger, N. Le Bihan, C. Cornou, P.-Y. Bard, Multicomponent signal processing for Rayleigh wave ellipticity estimation. IEEE Signal Process. Mag. 29, 29–39 (2012). https://doi.org/10.1109/MSP.2012.2184969

    ADS  Google Scholar 

  • R.D. Holtz, W.D. Kovacs, An Introduction to Geotechnical Engineering (Prentice Hall, New York, 1981)

    Google Scholar 

  • K. Hon, J. Kauahikaua, R. Denlinger, K. Mackay, Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol. Soc. Am. Bull. 106(3), 351–370 (1994)

    ADS  Google Scholar 

  • K.C. Horstman, H.J. Melosh, Drainage pits in cohesionless materials: implications for the surface of Phobos. J. Geophys. Res. 94(B9), 12433–12441 (1989)

    ADS  Google Scholar 

  • C.B. Hundal, M.P. Golombek, I.J. Daubar, Chronology of fresh rayed craters in Elysium Planitia, Mars, in 48th Lunar Planet. Sci. Conf. (2017). Abstract 1726

    Google Scholar 

  • J.A. Hurowitz, S.M. McLennan, N.J. Tosca, R.E. Arvidson, J.R. Michalski, D.W. Ming, C. Schroder, S.W. Squyres, In situ and experimental evidence for acidic weathering of rocks and soils on Mars. J. Geophys. Res. 111, E02S19 (2006). https://doi.org/10.1029/2005JE002515

    ADS  Google Scholar 

  • B.M. Jakosky, P.R. Christensen, Global duricrust on Mars: analysis of remote sensing data. J. Geophys. Res. 91(B3), 3547–3560 (1986)

    ADS  Google Scholar 

  • R. Kawamoto et al., Level set discrete element method for three-dimensional computations with triaxial case study. Journal of the Mechanics and Physics of Solids 91, 1–13 (2016)

    ADS  MathSciNet  Google Scholar 

  • S. Kedar, J. Andrade, B. Banerdt, P. Delage, M. Golombek, M. Grott, T. Hudson, A. Kiely, M. Knappmeyer, B. Knapmeyer-Endrun, C. Krause, T. Kawamura, P. Lognonne, T. Pike, Y. Ruan, T. Spohn, N. Teanby, J. Tromp, J. Wookey, Analysis of regolith properties using seismic signals generated by InSight’s HP3 penetrator. Space Sci. Rev. 211, 315–337 (2017). https://doi.org/10.1007/s11214-017-0391-3

    ADS  Google Scholar 

  • B. Kenda, P. Lognonné, A. Spiga, T. Kawamura, S. Kedar, W.B. Banerdt, R. Lorenz, D. Banfield, M. Golombek, Modeling of ground deformation and shallow surface waves generated by Martian dust devils and perspectives for near-surface structure inversion. Space Sci. Rev. 211, 501–524 (2017). https://doi.org/10.1007/s11214-017-0378-0

    ADS  Google Scholar 

  • H.H. Kieffer, Thermal model for analysis of Mars infrared mapping. J. Geophys. Res., Planets 118, 451470 (2013)

    Google Scholar 

  • B. Knapmeyer-Endrun, M. Golombek, M. Ohrnberger, Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed InSight landing site in Elysium Planitia. Space Sci. Rev. 211, 339–382 (2017). https://doi.org/10.1007/s11214-016-0300-1

    ADS  Google Scholar 

  • B. Knapmeyer-Endrun, N. Murdoch, B. Kenda, M.P. Golombek, M. Knapmeyer, L. Witte, N. Verdier, S. Kedar, P. Lognonné, W.B. Banerdt, Influence of body waves, instrumentation resonances, and prior assumptions on Rayleigh wave ellipticity inversion for shallow structure at the InSight landing site. Space Sci. Rev. (2018, this issue)

  • N.I. Kömle, J. Poganski, G. Kargl, J. Grygorczuk, Pile driving models for the evaluation of soil penetration resistance measurements from planetary subsurface probes. Planet. Space Sci. 109–110, 135–148 (2015)

    Google Scholar 

  • A.S. Konopliv, S.W. Asmar, W.M. Folkner, Ö. Karatekin, D.C. Nunes, S.E. Smrekar, C.F. Yoder, M.T. Zuber, Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428 (2011)

    ADS  Google Scholar 

  • A.S. Konopliv, R.S. Park, W.M. Folkner, An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data. Icarus 274, 253–260 (2016). https://doi.org/10.1016/j.icarus.2016.02.052

    ADS  Google Scholar 

  • L. Lancelot, I. Shahrour, M. Al Mahmoud, Comportement du sable d’Hostun sous faibles contraintes. Rev. Fr. Géotech. 74, 63–74 (1996)

    Google Scholar 

  • G.A. Landis, P.P. Jenkins, Measurement of the settling rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder. J. Geophys. Res. 105, 1855–1857 (2000)

    ADS  Google Scholar 

  • K.L. Lee, H.B. Seed, Drained strength characteristics of drained sands. J. Soil Mech. Found. Div. SM6, 117–141 (1967)

    Google Scholar 

  • M.T. Lemmon et al., Atmospheric imaging results from the Mars Exploration Rovers: Spirit and Opportunity. Science 306, 1753–1756 (2004). https://doi.org/10.1126/science.1104474

    ADS  Google Scholar 

  • R. Lichtenheldt, A novel systematic method to estimate the contact parameters of particles in discrete element simulations of soil, in Particle-Based Methods IV (2015), pp. 430–441. ISBN 978-84-944244-7-2

    Google Scholar 

  • R. Lichtenheldt, Lokomotorische Interaktion planetarer Explorationssysteme mit weichen Sandböden (Verlag Dr. Hut, Munich, 2016). ISBN 978-3-8439-2704-8

    Google Scholar 

  • R. Lichtenheldt, Covering shock waves on Mars induced by InSight’s HP3-MOLE—efficient co-simulation using DEM and multi-domain dynamics, in Coupled Problems 2017 (Artes Gráficas Torres S.L., Huelva, 2017). ISBN 978-84-943928-3-2

    Google Scholar 

  • R. Lichtenheldt, O. Krömer, Soil modeling for InSight’s HP3-Mole: from highly accurate particle-based towards fast empirical models, in ASCE Earth and Space Conference (2016)

    Google Scholar 

  • R. Lichtenheldt, B. Schäfer, O. Krömer, Hammering beneath the surface of Mars—modeling and simulation of the impact-driven locomotion of the HP3-Mole by coupling enhanced multi-body dynamics and discrete element method. Shaping the future by engineering, in 58th Ilmenau Scientific Colloquium, IWK (2014). urn:nbn:de:gbv:ilm1-2014iwk-155:2

    Google Scholar 

  • P. Lognonné et al., SEIS: The Seismic Experiment for Internal Structure of InSight. Space Sci. Rev. (2018, this issue)

  • R. Lorenz, D. Christie, Dust devil signatures in infrasound records of the International Monitoring System. Geophys. Res. Lett. 42, 2009–2014 (2015). https://doi.org/10.1002/2015GL063237

    ADS  Google Scholar 

  • R.D. Lorenz, D. Reiss, Solar panel clearing events, dust devil tracks, and in-situ vortex detections on Mars. Icarus 248, 162–164 (2015)

    ADS  Google Scholar 

  • R. Lorenz, S. Kedar, N. Murdoch, P. Lognonné, T. Kawamura, D. Mimoun, W.B. Banerdt, Seismometer detection of dust devil vortices by ground tilt. Bull. Seismol. Soc. Am. 105, 3015–3023 (2015)

    Google Scholar 

  • P. Lü, C. Narteau, Z. Dong, O. Rozier, S. Courrech du Pont, Unravelling raked linear dunes to explain the coexistence of bedforms in complex dune fields. Nat. Commun. 8, 14239 (2017)

    ADS  Google Scholar 

  • A. Lucas, C. Narteau, S. Rodriguez, O. Rozier, Y. Callot, A. Garcia, S. Courrech du Pont, Sediment flux from the morphodynamics of elongating linear dunes. Geology 43, 1027–1030 (2015)

    ADS  Google Scholar 

  • J.N. Maki, J.J. Lorre, P.H. Smith, R.D. Brandt, D.J. Steinwand, The color of Mars: measurements from the Pathfinder landing site. J. Geophys. Res., Planets 104(E4), 8781–8794 (1999). https://doi.org/10.1029/98JE01767

    ADS  Google Scholar 

  • J.N. Maki, J.F. Bell, K.E. Herkenhoff, S.W. Squyres, A. Kiely, M. Klimesh, M. Schwochert, T. Litwin, R. Willson, A. Johnson, M. Maimone, E. Baumgartner, A. Collins, M. Wadsworth, S.T. Elliot, A. Dingizian, D. Brown, E.C. Hagerott, L. Scherr, R. Deen, D. Alexander, J. Lorre, The Mars Exploration Rover Engineering Cameras. J. Geophys. Res. 108(E12), 8071 (2003). https://doi.org/10.1029/2003JE002077

    Google Scholar 

  • J. Maki, D. Thiessen, A. Pourangi, P. Kobzeff, T. Litwin, L. Scherr, S. Elliott, A. Dingizian, M. Maimone, The Mars Science Laboratory Engineering Cameras. Space Sci. Rev. 170, 77–93 (2012). https://doi.org/10.1007/s11214-012-9882-4

    ADS  Google Scholar 

  • J.N. Maki, M. Golombek, R. Deen, H. Abarca, C. Sorice, T. Goodsall, M. Lemmon, A. Trebi-Ollennu, B. Banerdt, The color cameras on the InSight lander. Space Sci. Rev. (2018, this issue)

  • N. Mangold, P. Allemand, P.G. Thomas, G. Vidal, Chronology of compressional deformation on Mars: evidence for a single and global origin. Planet. Space Sci. 48, 1201–1211 (2000)

    ADS  Google Scholar 

  • J.P. Marshall, T.L. Hudson, J.E. Andrade, Experimental investigation of InSight HP3 mole interaction with Martian regolith simulant. Quasi-static and dynamic penetration testing. Space Sci. Rev. 211, 1–4, 239–258 (2017)

    Google Scholar 

  • A.S. McEwen, L.L. Tornabene, H. Team, E.M. Eliason, J.W. Bergstrom, N.T. Bridges, C.J. Hansen, W.A. Delamere, J.A. Grant, V.C. Gulick, K.E. Herkenhoff, L. Keszthelyi, R.L. Kirk, M.T. Mellon, S.W. Squyres, N. Thomas, C.M. Weitz, Mars Reconnaissance Orbiter’s High-Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. 112, E05S02 (2007). https://doi.org/10.1029/2005JE002605

    Google Scholar 

  • G.E. McGill, A.M. Dimitriou, Origin of the Martian global dichotomy by crustal thinning in the Late Noachian or Early Hesperian. J. Geophys. Res. 95, 12,595–12,605 (1990)

    ADS  Google Scholar 

  • I.O. McGlynn, C.M. Fedo, H.Y. McSween Jr., Origin of basaltic soils at Gusev crater, Mars, by aeolian modification of impact-generated sediment. J. Geophys. Res. 116, E00F22 (2011). https://doi.org/10.1029/2010JE003712

    ADS  Google Scholar 

  • D.S. McKay, J.L. Carter, W.W. Boles, C. Allen, J. Allton, JSC-1: A Lunar Soil Simulant. Engineering, Construction, and Operations in Space IV (Am. Soc. Civil Engineers, Reston, 1994), pp. 857–866

    Google Scholar 

  • H.Y. McSween Jr., S.L. Murchie, J.A. Crisp, N.T. Bridges, R.C. Anderson, J.F. Bell III, D.T. Britt, J. Brückner, G. Dreibus, T. Economou, A. Ghosh, M.P. Golombek, J.P. Greenwood, J.R. Johnson, H.J. Moore, R.V. Morris, T.J. Parker, R. Rieder, R. Singer, H. Wänke, Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. J. Geophys. Res. 104, 8679–8715 (1999)

    ADS  Google Scholar 

  • H.Y. McSween et al., Basaltic rocks analyzed by the Spirit rover in Gusev crater. Science 305, 842–845 (2004)

    ADS  Google Scholar 

  • M. Mehta, N.O. Rennó, J. Marshall, M. Rob Grover, A. Sengupta, N.A. Rusche, J.F. Kok, R.E. Arvidson, W.J. Markiewicz, M.T. Lemmon, P.H. Smith, Explosive erosion during the Phoenix landing exposes subsurface water on Mars. Icarus 211, 172–194 (2011). https://doi.org/10.1016/j.icarus.2010.10.003

    ADS  Google Scholar 

  • M. Mehta, A. Sengupta, N.O. Rennó, J.W. Van Norman, P.G. Huseman, D.S. Gulick, M. Pokora, Thruster plume surface interactions: applications for spacecraft landings on planetary bodies. AIAA J. 51, 2800–2818 (2013). https://doi.org/10.2514/1.J052408

    ADS  Google Scholar 

  • M.T. Mellon, B.M. Jakosky, H.H. Kieffer, P.R. Christensen, High-resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer. Icarus 148, 437–455 (2000)

    ADS  Google Scholar 

  • M.T. Mellon, R.L. Fergason, N.E. Putzig, The thermal inertia of the surface of Mars, in The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  • H.J. Melosh, Impact Cratering: A Geologic Process (Oxford University Press, London, 1989)

    Google Scholar 

  • D. Mimoun, N. Murdoch, P. Lognonné, K. Hurst, W.T. Pike, J. Hurley, T. Nébut, W.B. Banerdt (SEIS Team), The noise model of the SEIS seismometer of the InSight mission to Mars. Space Sci. Rev. 211, 383–428 (2017). https://doi.org/10.1007/s11214-017-0409-x

    ADS  Google Scholar 

  • M.E. Minitti, L.C. Kah, R.A. Yingst, K.S. Edgett, R.C. Anderson, L.W. Beegle, J.L. Carsten, R.G. Deen, W. Goetz, C. Hardgrove, D.E. Harker, MAHLI at the Rocknest sand shadow: science and science-enabling activities. J. Geophys. Res., Planets 118(11), 2338–2360 (2013)

    ADS  Google Scholar 

  • S. Monin, A. Obukhov, Basic laws of turbulent mixing in the ground layer of the atmosphere. Tr. Akad. Nauk SSSR Geofiz. Inst. 24, 163–187 (1954)

    Google Scholar 

  • H.J. Moore, R.E. Hutton, G.D. Clow, C.R. Spitzer, Physical properties of the surface materials of the Viking landing sites on Mars. U. S. Geol. Surv. Prof. Pap. 1389, 222pp., 2plates (1987)

    Google Scholar 

  • H.J. Moore, D. Bickler, J. Crisp et al., Soil-like deposits observed by Sojourner, the Pathfinder rover. J. Geophys. Res. 104, 8729–8746 (1999)

    ADS  Google Scholar 

  • J.E. Moores, M.T. Lemmon, H. Kahanpää, S.C. Rafkin, R. Francis, J. Pla-Garcia, K. Bean, R. Haberle, C. Newman, M. Mischna, A.R. Vasavada, Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover. Icarus 249, 129–142 (2015)

    ADS  Google Scholar 

  • P. Morgan, M. Grott, M. Golombek, P. Delage, B. Knapmeyer-Endrun, S. Piqueux, I.J. Daubar, C. Charalambous, T. Pike, N. Müller, A. Hagermann, M. Siegler, R. Lichtenheldt, N. Teanby, S. Kedar, A pre-landing assessment of regolith properties at the InSight landing site. Space Sci. Rev. (2018, this issue)

  • K. Mueller, M.P. Golombek, Compressional structures on Mars. Annu. Rev. Earth Planet. Sci. 32, 435–464 (2004). https://doi.org/10.1146/annurev.earth.32.101802.120553

    ADS  Google Scholar 

  • N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, W.B. Banerdt, Estimations of the seismic pressure noise on Mars determined from Large Eddy Simulations and demonstration of pressure decorrelation techniques for the Insight mission. Space Sci. Rev. 211, 457–483 (2017a). https://doi.org/10.1007/s11214-017-0343-y

    ADS  Google Scholar 

  • N. Murdoch, D. Mimoun, R.F. Garcia, W. Rapin, T. Kawamura, P. Lognonné, Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Sci. Rev. 211, 419–455 (2017b). https://doi.org/10.1007/s11214-016-0311-y

    ADS  Google Scholar 

  • T.A. Mutch, R.E. Arvidson, A.B. Binder, E.A. Guinness, E.C. Morris, The geology of the Viking Lander 2 site. J. Geophys. Res. 82, 4452–4467 (1977)

    ADS  Google Scholar 

  • G. Neugebauer, G. Munch, H. Kieffer, J.S.C. Chase, E. Miner, Mariner 1969 infrared radiometer results: temperatures and thermal properties of the martian surface. Astron. J. 76, 719–728 (1971)

    ADS  Google Scholar 

  • S.A. Nowicki, P.R. Christensen, Rock abundance on Mars from the Thermal Emission Spectrometer. J. Geophys. Res. 112, E05007 (2007). https://doi.org/10.1029/2006JE002798

    ADS  Google Scholar 

  • V.R. Oberbeck, W.L. Quaide, Genetic implications of lunar regolith thickness variations. Icarus 9, 446–465 (1968)

    ADS  Google Scholar 

  • L. Ojha, S.E. Smrekar, D. Nunes, Geophysical characterization of Elysium Planitia: Implications for the InSight Mission (2018, in preparation)

  • D.A. Paige, M.P. Golombek, J.N. Maki, T.J. Parker, L.S. Crumpler, J.A. Grant, J.P. Williams, MER small crater statistics: evidence against recent quasi-periodic climate variations, in The Seventh International Conference on Mars, Pasadena, CA, July 9–13, 2007 (Lunar and Planetary Institute, Houston, 2007). Abstract #3392 (CD-ROM)

    Google Scholar 

  • L. Pan, C. Quantin, Regional geological context of the InSight Landing Site from mineralogy and stratigraphy. in 49th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2018). Abstract #1918

    Google Scholar 

  • M.P. Panning, P. Lognonne, W.B. Banerdt, R. Garcia, M. Golombek, S. Kedar, B. Knapmeyer-Endrun, A. Mocquet, N.A. Teanby, J. Tromp, R. Weber, E. Beucler, J.-F. Blanchette-Guertin, E. Bozdag, M. Drilleau, T. Gudkova et al., Planned products of the Mars Structure Service for the InSight mission to Mars. Space Sci. Rev. 211, 611–650 (2017). https://doi.org/10.1007/s11214-016-0317-5

    ADS  Google Scholar 

  • G.H. Peters, W. Abbey, G.H. Bearman, G.S. Mungas, J.A. Smith, R.C. Anderson, S. Douglas, L.W. Beegle, Mojave Mars simulant—characterization of a new geologic Mars analog. Icarus 197, 470–479 (2008). https://doi.org/10.1016/j.icarus.2008.05.004

    ADS  Google Scholar 

  • G.M. Pharr, W.C. Oliver, F.R. Brotzen, On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7(3), 613–617 (1992)

    ADS  Google Scholar 

  • R.J. Pike, Depth/diameter relations of fresh lunar craters: revision from spacecraft data. Geophys. Res. Lett. 1, 291–294 (1974). https://doi.org/10.1029/GL001i007p00291

    ADS  Google Scholar 

  • S. Piqueux, P.R. Christensen, A model of thermal conductivity for planetary soils: 2. Theory for cemented soils. J. Geophys. Res. 114, E09006 (2009). https://doi.org/10.1029/2008je003309

    ADS  Google Scholar 

  • S. Piqueux, P.R. Christensen, Temperature-dependent thermal inertia of homogeneous Martian regolith. J. Geophys. Res. 116, E07004 (2011). https://doi.org/10.1029/2011je003805

    ADS  Google Scholar 

  • T. Platz, G. Michael, K.L. Tanaka, J.A. Skinner Jr., C.M. Fortezzo, Crater-based dating of geological units on Mars: methods and application for the new global geological map. Icarus 225, 806–827 (2013). https://doi.org/10.1016/j.icarus.2013.04.021

    ADS  Google Scholar 

  • D.H. Plemmons, M. Mehta, B.C. Clark, S.P. Kounaves, L.L. Peach, N.O. Rennó, L.K. Tamppari, S.M.M. Young, Effects of the Phoenix Lander descent thruster plume on the Martian surface. J. Geophys. Res. 113, E00A11 (2008). https://doi.org/10.1029/2007JE003059

    ADS  Google Scholar 

  • A.-C. Plesa, M. Grott, M.T. Lemmon et al., Interannual perturbations of the Martian surface heat flow by atmospheric dust opacity variations. J. Geophys. Res., Planets 121, 2166–2175 (2016)

    ADS  Google Scholar 

  • J. Poganski, N.I. Kömle, G. Kargl et al., Extended pile driving model to predict the penetration of the Insight/HP3 Mole into the martian soil. Space Sci. Rev. 211, 1–4, 237–237 (2017a)

    Google Scholar 

  • J. Poganski et al., DEM modelling of a dynamic penetration process on Mars as a part of the NASA InSight Mission. Proc. Eng. 175, 43–50 (2017b)

    Google Scholar 

  • H.-G. Poulos, E.-H. Davis, Elastic Solutions for Soil and Rock Mechanics (Wiley, New York, 1974)

    Google Scholar 

  • B.A. Preblich, A.S. McEwen, D.M. Studer, Mapping rays and secondary craters from Martian crater Zunil. J. Geophys. Res., Planets 112, E05006 (2007). https://doi.org/10.1029/2006JE002817

    ADS  Google Scholar 

  • M.A. Presley, P.R. Christensen, Thermal conductivity measurements of particulate materials, Part I: A review. J. Geophys. Res. 102, 6535–6549 (1997a)

    ADS  Google Scholar 

  • M.A. Presley, P.R. Christensen, Thermal conductivity measurements of particulate materials, Part II: Results. J. Geophys. Res. 102, 6551–6566 (1997b)

    ADS  Google Scholar 

  • M.A. Presley, P.R. Christensen, The effect of bulk density and particle size sorting on the thermal conductivity of particulate materials under Martian atmospheric pressures. J. Geophys. Res. 102(E4), 9221–9229 (1997c)

    ADS  Google Scholar 

  • M.A. Presley, R.A. Craddock, Thermal conductivity measurements of particulate materials: 3. Natural samples and mixtures of particle sizes. J. Geophys. Res. 111, E09013 (2006)

    ADS  Google Scholar 

  • N.E. Putzig, M.T. Mellon, Apparent thermal inertia and the surface heterogeneity of Mars. Icarus 191(1), 68–94 (2007). https://doi.org/10.1016/j.icarus.2007.1005.1013

    ADS  Google Scholar 

  • F. Reiser, C. Schmelzbach, D. Sollberger, H. Maurer, S.A. Greenhalgh, S. Planke, F. Kästner, Ó. Flóvenz, R. Giese, S. Halldórsdóttir, G. Hersir, Imaging the high-temperature geothermal field at Krafla using vertical seismic profiling. J. Volcanol. Geotherm. Res. (2018, submitted)

  • D. Reiss, R.D. Lorenz, Dust devil track survey at Elysium Planitia, Mars: implications for the InSight landing sites. Icarus 266, 315–330 (2016)

    ADS  Google Scholar 

  • D.M. Rubin, R.E. Hunter, Bedform alignment in directionally varying flows. Science 237, 276–278 (1987)

    ADS  Google Scholar 

  • S. Ruff, P.R. Christensen, Bright and dark regions on Mars: particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res. 107(E12), 5127 (2002). https://doi.org/10.1029/2001JE001580

    Google Scholar 

  • K.D. Runyon, N.T. Bridges, F. Ayoub, C.E. Newman, J.J. Quade, An integrated model for dune morphology and sand fluxes on Mars. Earth Planet. Sci. Lett. 457, 204–212 (2017)

    ADS  Google Scholar 

  • C. Schmelzbach, A.G. Green, H. Horstmeyer, Ultra-shallow seismic reflection imaging in a region characterized by high source-generated noise. Near Surf. Geophys. 3, 33–46 (2005)

    Google Scholar 

  • R.A. Schultz, Localization of bedding-plane slip and backthrust faults above blind thrust faults: keys to wrinkle ridge structure. J. Geophys. Res. 105, 035 (2000)

    Google Scholar 

  • R.F. Scott, Failure. Geotechnique 37(4), 423–466 (1987)

    Google Scholar 

  • K.D. Seelos, F.P. Seelos, C.E. Viviano- Beck, S.L. Murchie, R.E. Arvidson, B.L. Ehlmann, A.A. Fraeman, Mineralogy of the MSL Curiosity landing site in Gale crater as observed by MRO/CRISM. Geophys. Res. Lett. 41, 4880–4887 (2014). https://doi.org/10.1002/2014GL060310

    ADS  Google Scholar 

  • E. Sefton-Nash, N.A. Teanby, C. Newman, R.A. Clancy, M.I. Richardson, Constraints on Mars’ recent equatorial wind regimes from layered deposits and comparison with general circulation model results. Icarus 230, 81–95 (2014)

    ADS  Google Scholar 

  • K. Seiferlin, P. Ehrenfreund, J. Garry, K. Gunderson, E. Hütter, G. Kargl, A. Maturilli, J.P. Merrison, Simulating martian regolith in the laboratory. Planet. Space Sci. 56(15), 2009–2025 (2008)

    ADS  Google Scholar 

  • A. Seiff, J.E. Tillman, J.R. Murphy, J.T. Schofield, D. Crisp, J.R. Barnes, C. LaBaw, C. Mahoney, G.R. Wilson, R. Haberle, The atmosphere structure and meteorology instrument on the Mars Pathfinder lander. J. Geophys. Res. 102, 4045–4056 (1997)

    ADS  Google Scholar 

  • A. Shaw, R.E. Arvidson, R. Bonitz, J. Carsten, H.U. Keller, M.T. Lemmon, M.T. Mellon, M. Robinson, A. Trebi-Ollennu, Phoenix soil physical properties investigation. J. Geophys. Res. 114, E00E05 (2009). https://doi.org/10.1029/2009JE003455

    ADS  Google Scholar 

  • D.E. Smith et al., Mars Orbiter Laser Altimeter (MOLA): experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23,689–23,722 (2001)

    ADS  Google Scholar 

  • P.H. Smith et al., \(\mbox{H}_{2}\mbox{O}\) at the Phoenix landing site. Science 325, 58–61 (2009)

    ADS  Google Scholar 

  • G.G. Sorrells, J.A. McDonald, Z.A. Der, E. Herrin, Earth motion caused by local atmospheric pressure changes. Geophys. J. R. Astron. Soc. 26, 83–98 (1971)

    ADS  Google Scholar 

  • A. Spiga et al., Atmospheric science with InSight. Space Sci. Rev. (2018, this issue)

  • T. Spohn, M. Grott et al., The Heat Flow and Physical Properties Package (HP3) for the InSight Mission. Space Sci. Rev. (2018, this issue)

  • P.M. Stella, J.A. Herman, The Mars surface and solar array performance, in 35th IEEE Photovoltaic Specialists Conference, Honolulu, 20–25 June 2010 (2010), pp. 002631–002635. https://doi.org/10.1109/PVSC.2010.5617185

    Google Scholar 

  • J.D. Stopar, M.S. Robinson, O.S. Barnouin, A.S. McEwen, E.J. Speyerer, M.R. Henriksen, S.S. Sutton, Relative depths of simple craters and the nature of the lunar regolith. Icarus 298, 34–48 (2017). https://doi.org/10.1016/j.icarus.2017.05.022

    ADS  Google Scholar 

  • R. Sullivan, R. Greeley, M. Kraft, G. Wilson, M. Golombek, K. Herkenhoff, J. Murphy, P. Smith, Results of the Imager for Mars Pathfinder windsock experiment. J. Geophys. Res. 105, 24547–24562 (2000)

    ADS  Google Scholar 

  • R. Sullivan, R. Anderson, J. Biesiadecki, T. Bond, H. Stewart, Cohesions, friction angles, and other physical properties of Martian regolith from Mars Exploration Rover wheel trenches and wheel scuffs. J. Geophys. Res. 116, E02006 (2011). https://doi.org/10.1029/2010JE003625

    ADS  Google Scholar 

  • J.L. Sutton, C.B. Levoy, J.E. Tillman, Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking Lander sites. J. Atmos. Sci. 35, 2346–2355 (1978)

    ADS  Google Scholar 

  • J. Sweeney, N.H. Warner, M.P. Golombek, R.L. Kirk, R.L. Fergason, A. Pivarunas, Crater degradation and surface erosion rates at the InSight landing site, western Elysium Planitia, Mars, in 47th Lunar Planet. Sci. Conf. (2016). Abstract 1576

    Google Scholar 

  • J. Sweeney, N.H. Warner, V. Ganti, M.P. Golombek, M.P. Lamb, R. Fergason, R. Kirk, Degradation of one-hundred-meter-scale impact craters at the InSight landing site on Mars with implications for surface process rates in the Hesperian and Amazonian. J. Geophys. Res., Planets (2018, in review)

  • T. Szabo, G. Domokos, J.P. Grotzinger, D.J. Jerolmack, Reconstructing the transport history of pebbles on Mars. Nat. Commun. 6, 8366 (2015). https://doi.org/10.1038/ncomms9366

    ADS  Google Scholar 

  • K.L. Tanaka, J.A. Skinner, J.M. Dohm, R.P. Irwin, E.J. Kolb, C.M. Fortezzo, T. Platz, G.G. Michael, T.M. Hare, Geologic Map of Mars, 1:20,000,000, USGS Scientific Investigations Map 3292 (2014)

  • P.A. Taylor, D.C. Catling, M. Daly, C.S. Dickinson, H.P. Gunnlaugsson, A-M. Harri, C.F. Lange, Temperature, pressure and wind instrumentation in the Phoenix meteorological package. J. Geophys. Res. 113, E00A10 (2008). https://doi.org/10.1029/2007JE003015

    ADS  Google Scholar 

  • N.A. Teanby, J. Stevanović, J. Wookey, N. Murdoch, J. Hurley, R. Myhill, N.E. Bowles, S.B. Calcutt, W.T. Pike, Seismic coupling of short-period wind noise through Mars’ regolith for NASA’s InSight lander. Space Sci. Rev. 211, 485 (2017). https://doi.org/10.1007/s11214-016-0310-z

    ADS  Google Scholar 

  • E. Theilig, R. Greeley, Lava flows on Mars: analysis of small surface features and comparisons with terrestrial analogs. J. Geophys. Res. 91(B13), E193–E206 (1986). https://doi.org/10.1029/JB091iB13p0E193

    ADS  Google Scholar 

  • N. Thomas, G. Cremonese, R. Ziethe, M. Gerber et al., The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter. Space Sci. Rev. 2017(212), 1897–1944 (2017). https://doi.org/10.1007/s11214-017-0421-1

    ADS  Google Scholar 

  • B.J. Thomson, P.H. Schultz, N.T. Bridges, Extracting scientific results from robotic arm support operations: a technique for estimating the density and composition of rocks on Mars. Mars 4, 27–32 (2008). https://doi.org/10.1555/mars.2008.0003

    ADS  Google Scholar 

  • A. Trebi-Ollennu, W. Kim, K. Ali et al., InSight Mars lander robotics instrument deployment system. Space Sci. Rev. (2018, this issue)

  • A.R. Vasavada, S. Piqueux, K.W. Lewis et al., Thermophysical properties along Curiosity’s traverse in Gale crater, Mars, derived from the REMS ground temperature sensor. Icarus 284, 372–386 (2017). https://doi.org/10.1016/j.icarus.2016.11.035

    ADS  Google Scholar 

  • J. Vaucher, D. Baratoux, N. Mangold, P. Pinet, K. Kurita, M. Grégoire, The volcanic history of central Elysium Planitia: implications for martian magmatism. Icarus 204, 418–442 (2009)

    ADS  Google Scholar 

  • A.F. Vaughan et al., Pancam and microscopic imager observations of dust on the Spirit rover: cleaning events, spectral properties, and aggregates. Mars 5, 129–145 (2010). https://doi.org/10.1555/mars.2010.0005

    ADS  Google Scholar 

  • C.A. Verba, P.E. Geissler, T.N. Titus, D. Waller, Observations from the high resolution imaging science experiment (HiRISE): Martian dust devils in Gusev and Russell craters. J. Geophys. Res., Planets 115(E9), Doi (2010). https://doi.org/10.1029/2009JE003498

    Google Scholar 

  • C. Vrettos, Shear strength investigations for a class of extra-terrestrial analogue soils. J. Geotech. Geoenviron. Eng. 138, 508–515 (2012)

    Google Scholar 

  • C. Vrettos, A. Becker, K. Merz, L. Witte, Penetration tests in a mold on regolith quasi-analogues at different relative densities, in Earth & Space 2014, 14th ASCE International Conference on Engineering, Science, Construction and Operations in Challenging Environments (2014)

    Google Scholar 

  • G.P.L. Walker, Structure, and origin by injection of lava under surface crust, of tumuli, “lava rises”, “lava-rise pits”, and “lava-inflation clefts”, Hawaii. Bull. Volcanol. 53(7), 546–558 (1991)

    ADS  Google Scholar 

  • N.H. Warner, S. Gupta, F.J. Calef, P. Grindrod, K. Goddard, Minimum effective area for high resolution crater counting of martian terrains. Icarus 245, 198–240 (2015). https://doi.org/10.1016/j.icarus.2014.09.024

    ADS  Google Scholar 

  • N.H. Warner, M.P. Golombek, J. Sweeney, R. Fergason, R. Kirk, C. Schwartz, Near surface stratigraphy and regolith production in southwestern Elysium Planitia, Mars: implications for Hesperian-Amazonian terrains and the InSight lander mission. Space Sci. Rev. 211, 147–190 (2017). https://doi.org/10.1007/s11214-017-0352-x

    ADS  Google Scholar 

  • T.R. Watters, Wrinkle ridge assemblages on the terrestrial planets. J. Geophys. Res. 93, 10236–10254 (1988)

    ADS  Google Scholar 

  • W.A. Watters, L.M. Geiger, M.A. Fendrock, R. Gibson, Morphometry of small recent impact craters on Mars: size and terrain dependence, short-term modification. J. Geophys. Res., Planets 210(2), 226–254 (2015). https://doi.org/10.1002/2014JE004630

    ADS  Google Scholar 

  • S.G. Wells, J.C. Dohrenwend, L.D. McFadden, B.F. Turrin, K.D. Mahrer, Late Cenozoic landscape evolution on lava flow surfaces of the Cima volcanic field, Mojave Desert, California. Geol. Soc. Am. Bull. 96, 1518–1529 (1985)

    ADS  Google Scholar 

  • S.C. Werner, K.L. Tanaka, Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars. Icarus 215, 603–607 (2011)

    ADS  Google Scholar 

  • M.A. Wieczorek et al., The crust of the Moon as seen by GRAIL. Science 339(6120), 671–675 (2012). https://doi.org/10.1126/science.1231530

    ADS  Google Scholar 

  • A. Wilkinson, A. DeGennaro, Digging and pushing lunar regolith: classical soil mechanics and the forces needed for excavation and traction. J. Terramech. 44(2), 133–152 (2007)

    Google Scholar 

  • M.M. Withers, R.C. Aster, C.J. Young, E.P. Chael, High-frequency analysis of seismic background noise as a function of wind speed and shallow depth. Bull. Seismol. Soc. Am. 86, 1507–1515 (1996)

    Google Scholar 

  • R.A. Yingst, A.F.C. Haldemann, K.L. Biedermann et al., Quantitative morphology of rocks at the Mars Pathfinder landing site. J. Geophys. Res. 112, E06002 (2007). https://doi.org/10.1029/2005JE002582

    ADS  Google Scholar 

  • R.A. Yingst, L. Crumpler, W.H. Farrand et al., Morphology and texture of particles along the Spirit rover traverse from sol 450 to sol 745. J. Geophys. Res. 113, E12S41 (2008). https://doi.org/10.1029/2008JE003179

    ADS  Google Scholar 

  • R.A. Yingst et al., Characteristics of pebble- and cobble-sized clasts along the Curiosity rover traverse from Bradbury Landing to Rocknest. J. Geophys. Res., Planets 118, 2361–2380 (2013). https://doi.org/10.1002/2013JE004435

    ADS  Google Scholar 

Download references

Acknowledgements

A portion of the work was supported by the InSight Project at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. N. A. Teanby is supported by the UK Space Agency. French authors acknowledge the support by Centre National d’Études Spatiales (CNES) and IPGP authors the financial support of the UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-1013 IDEX-0005-02), the French National Research Agency (ANR-12-BS05-001-3/EXO-DUNES and ANR SIMARS), and the Institut Universitaire de France. The work by C. Schmelzbach and J. Robertsson was partly supported by ETH Research Grant ETH-06 17-2. ETH Zurich acknowledges support by Landmark Graphics via the Landmark University Grant Program (Landmark ProMax/SeisSpace software was partly used to process the synthetic HP3-SEIS hammering data). This paper is InSight Contribution Number 40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Golombek.

Additional information

The InSight Mission to Mars II

Edited by William B. Banerdt and Christopher T. Russell

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golombek, M., Grott, M., Kargl, G. et al. Geology and Physical Properties Investigations by the InSight Lander. Space Sci Rev 214, 84 (2018). https://doi.org/10.1007/s11214-018-0512-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-018-0512-7

Keywords

Navigation