Skip to main content
Log in

Touch And Go Camera System (TAGCAMS) for the OSIRIS-REx Asteroid Sample Return Mission

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

NASA’s OSIRIS-REx asteroid sample return mission spacecraft includes the Touch And Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample, and document asteroid sample stowage. The cameras were designed and constructed by Malin Space Science Systems (MSSS) based on requirements developed by Lockheed Martin and NASA. All three of the cameras are mounted to the spacecraft nadir deck and provide images in the visible part of the spectrum, 400–700 nm. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. Their boresights are aligned in the nadir direction with small angular offsets for operational convenience. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Its boresight is pointed at the OSIRIS-REx sample return capsule located on the spacecraft deck. All three cameras have at their heart a \(2592 \times 1944~\mbox{pixel}\) complementary metal oxide semiconductor (CMOS) detector array that provides up to 12-bit pixel depth. All cameras also share the same lens design and a camera field of view of roughly \(44^{\circ} \times 32^{\circ}\) with a pixel scale of 0.28 mrad/pixel. The StowCam lens is focused to image features on the spacecraft deck, while both NavCam lens focus positions are optimized for imaging at infinity. A brief description of the TAGCAMS instrument and how it is used to support critical OSIRIS-REx operations is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

ADC:

analog to digital converter

CCTM:

Camera Calibration Toolbox for Matlab

CM:

center of mass

CMOS:

complementary metal oxide semiconductor

DN:

digital number

DTM:

digital terrain map

DVR:

digital video recorder

EM:

engineering model

EMC:

electromagnetic compatibility

EMI:

electromagnetic interference

EPROMS:

erasable programmable read-only memory

FDS:

flight dynamics system

FITS:

Flexible Image Transport System

FPGA:

field programmable gate array

GDS:

ground data system

KXIMP:

KinetX Star-Based Image Processing Suite

LED:

light-emitting diode

LIDAR:

light detection and ranging

LVDS:

low voltage differential signaling

MFOV:

medium field of view

MSA:

mission support area

MSSS:

Malin Space Science Systems

MTF:

modulation transfer function

NFT:

natural feature tracking

OCAMS:

OSIRIS-REx camera suite

OD:

orbit determination

ODM:

orbit departure maneuver

OpNav:

optical navigation

OSIRIS-REx:

Origins Spectral Interpretation Resource Identification Security Regolith Explorer

PDS:

Planetary Data System

QTH:

quartz-tungsten-halogen

RAL:

Reverberant Acoustics Laboratory

SNR:

signal-to-noise ratio

SOSC:

Space Operations Simulation Center

SPOC:

science processing and operations center

SRC:

sample return capsule

SVT:

spacecraft verification tests

TAG:

touch and go

TAGCAMS:

Touch And Go Camera System

References

  • H.N. Becker, M.D. Dolphin, D.O. Thorbourn, J.W. Alexander, P.M. Salomon, Commercial sensor survey radiation testing progress report. Jet Propulsion Laboratory Publication 08-22 (April 2008)

  • K. Berry, B. Sutter, A. May, K. Williams, B.W. Barbee, M. Beckman, B. Williams, OSIRIS-REx Touch-And-Go (TAG) mission design and analysis, in 36th Annual AAS Guidance and Control Conference, 13-095 1–6 February (2013)

    Google Scholar 

  • J.Y. Bouguet, Camera Calibration Toolbox for Matlab. Computer Vision Research Group, Dept. of Electrical Engineering, California Institute of Technology (2014). http://www.vision.caltech.edu/bouguetj/calib_doc/. Accessed 30 December 2016

  • P.R. Christensen, B.M. Jakosky, H.H. Kieffer, M.C. Malin, H.Y. Mcsween Jr., K. Nealson, G.L. Mehall, S.H. Silverman, S. Ferry, M. Caplinger, M. Ravine, The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 110, 85–130 (2004)

    Article  ADS  Google Scholar 

  • K.S. Edgett, R.A. Yingst, M.A. Ravine, M.A. Caplinger, J.N. Maki, F.T. Ghaemi, J.A. Schaffner, J.F. Bell III, L.J. Edwards, K.E. Herkenhoff, E. Heydari, L.C. KahMark, T. Lemmon, M.E. Minitti, T.S. Olson et al., Curiosity’s Mars Hand Lens Imager (MAHLI) investigation. Space Sci. Rev. 170, 259–317 (2012)

    Article  ADS  Google Scholar 

  • European Cooperation for Space Standardization, SpaceWire—Links, nodes, routers and networks. Space Engineering, ECSS-E-ST-50-12C (31 July 2008)

  • R.W. Gaskell, O.S. Barnouin-Jha, D.J. Scheeres, A.S. Konopliv, T. Mukai, S. Abe, J. Saito, M. Ishiguro, T. Kubota, T. Hashimoto, J. Kawaguchi, M. Yoshikawa, K. Shirakawa, T. Kominato, N. Hirata, H. Demura, Characterizing and navigating small bodies with imaging data. Meteorit. Planet. Sci. 43(6), 1049–1061 (2008)

    Article  ADS  Google Scholar 

  • C.D. Jackman, D.S. Nelson, W.M. Owen Jr., M.W. Buie, S.A. Stern, H.A. Weaver, L.A. Young, K. Ennico, C.B. Olkin, New Horizons optical navigation on approach to Pluto, in Advances in the Astronautical Sciences Guidance, Navigation and Control, vol. 157 (2016), pp. 16–083

    Google Scholar 

  • J.R. Janesick, DN to \(\lambda\) (SPIE Press, Bellingham, 2007), pp. 1–258

    Google Scholar 

  • D.S. Lauretta, S.S. Balram-Knutson, E. Beshore, W.V. Boynton, C. Drouet d’Aubigny, D.N. DellaGiustina, H.L. Enos, D.R. Gholish, C.W. Hergenrother, E.S. Howell, C.A. Johnson, E.T. Morton, M.C. Nolan, B. Rizk, H.L. Roper, A.E. Bartels, B.J. Bos, J.P. Dworkin, D.E. Highsmith, M.C. Moreau, D.A. Lorenz, L.F. Lim, R. Mink, J.A. Nuth, D.C. Reuter, A.A. Simon, E.B. Bierhaus, B.H. Bryan, R. Ballouz, O.S. Barnouin, R.P. Binzel, W.F. Bottke, V.E. Hamilton, K.J. Walsh, S.R. Chesley, P.R. Christensen, B.E. Clark, H.C. Connolly, M.K. Crombie, M.G. Daly, J.P. Emery, T.J. McCoy, J.W. McMahon, D.J. Scheeres, S. Messenger, K. Nakamura-Messenger, K. Righter, S.A. Sandford, OSIRIS-REx: sample return from asteroid (101955) Bennu. Space Sci. Rev. 212(1–2), 925–984 (2017, this issue). https://doi.org/10.1007/s11214-017-0405-1

    Article  ADS  Google Scholar 

  • M.C. Malin, J.F. Bell, B.A. Cantor, M.A. Caplinger, W.M. Calvin, R.T. Clancy, K.S. Edgett, L. Edwards, R.M. Haberle, P.B. James, S.W. Lee, M.A. Ravine, P.C. Thomas, M.J. Wolff, Context Camera investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. 112, E05S04 (2007)

    Article  ADS  Google Scholar 

  • C. Mario, C. Debrunner, Robustness and performance impacts of optical-based feature tracking to OSIRIS-REx asteroid sample collection mission, in 39th Annual AAS Guidance and Control Conference, 16-087, 5–10 February (2016)

    Google Scholar 

  • Z. Milenkovich, C. D’Souza, The Space Operations Simulation Center (SOSC) and closed-loop hardware testing for Orion rendezvous system design, in AIAA Guidance, Navigation, and Control Conference, 13–16 August (2012), pp. 1–16

    Google Scholar 

  • R. Olds, A. May, C. Mario, R. Hamilton, C. Debrunner, K. Anderson, The application of optical based feature tracking to OSIRIS-REx asteroid sample collection, in 38th Annual AAS Guidance and Control Conference, 15-124, 30 January–4 February (2015)

    Google Scholar 

  • OpenCV, Camera calibration and 3D construction. Open Source Computer Vision, OpenCV.org (2016). http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html. Accessed 30 December 2016

  • B. Rizk et al., OCAMS: the OSIRIS-REx camera suite. Space Sci. Rev. (2017, this issue). https://doi.org/10.1007/s11214-017-0460-7

    Google Scholar 

  • M.S. Robinson, S.M. Brylow, M. Tschimmel, D. Humm, S.J. Lawrence, P.C. Thomas, B.W. Denevi, E. Bowman-Cisneros, J. Zerr, M.A. Ravine, M.A. Caplinger, F.T. Ghaemi, J.A. Schaffner, M.C. Malin, P. Mahanti, A. Bartels, J. Anderson, T.N. Tran, E.M. Eliason, A.S. McEwen, E. Turtle, B.L. Jolliff, H. Hiesinger, Lunar Reconnaissance Orbiter Camera (LROC) instrument overview. Space Sci. Rev. 150, 81–124 (2010)

    Article  ADS  Google Scholar 

  • B. Williams, P. Antreasian, E. Carranza, C. Jackman, J. Leonard, D. Nelson, B. Page, D. Stanbridge, D. Wibben, K. Williams, M. Moreau, K. Berry, K. Getzandanner, A. Liounis, A. Mashiku, D. Highsmith, B. Sutter, D.S. Lauretta, OSIRIS-REx flight dynamics and navigation design. Space Sci. Rev. (2018, this issue)

Download references

Acknowledgements

This material is based upon work supported by NASA under Contracts NNM10AA11C, NNG12FD66C and NNG13FC02C issued through the New Frontiers Program. Copy editing and indexing provided by Mamassian Editorial Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Bos.

Additional information

OSIRIS-REx

Edited by Dante Lauretta and Christopher T. Russell

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bos, B.J., Ravine, M.A., Caplinger, M. et al. Touch And Go Camera System (TAGCAMS) for the OSIRIS-REx Asteroid Sample Return Mission. Space Sci Rev 214, 37 (2018). https://doi.org/10.1007/s11214-017-0465-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-017-0465-2

Keywords

Navigation