Skip to main content
Log in

Magnetic Field Perturbations from Currents in the Dark Polar Regions During Quiet Geomagnetic Conditions

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

In the day-side sunlit polar ionosphere the varying and IMF dependent convection creates strong ionospheric currents even during quiet geomagnetic conditions. Observations during such times are often excluded when using satellite data to model the internal geomagnetic main field. Observations from the night-side or local winter during quiet conditions are, however, also influenced by variations in the IMF. In this paper we briefly review the large scale features of the ionospheric currents in the polar regions with emphasis on the current distribution during undisturbed conditions. We examine the distribution of scalar measurements of the magnetic field intensity minus predictions from a geomagnetic field model. These ‘residuals’ fall into two main categories. One category is consistently distributed according to the well-known ionospheric plasma convection and its associated Birkeland currents. The other category represent contributions caused by geomagnetic activity related to the substorm current wedge around local magnetic midnight. A new observation is a strong IMF \(B_{y}\) control of the residuals in the midnight sector indicating larger ionospheric currents in the substorm current wedge in the northern polar region for \(B_{y} > 0\) and correspondingly in the southern hemisphere for \(B_{y} < 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. ftp://spdf.gsfc.nasa.gov/pub/data/omni/high_res_omni/

References

  • W. Baumjohann, Ionospheric and field-aligned current systems in the auroral zone: a concise review. Adv. Space Res. 2(10), 55–62 (1983)

    Article  ADS  Google Scholar 

  • J. Burch, P. Reiff, J. Menietti, R. Heelis, W. Hanson, S. Shawhan, E. Shelley, M. Sugiura, D. Weimer, J. Winningham, IMF \(B_{y}\)-dependent plasma flow and Birkeland currents in the dayside magnetosphere: 1. Dynamics Explorer observations. J. Geophys. Res. Space Phys. 90(A2), 1577–1593 (1985)

    Article  ADS  Google Scholar 

  • S. Cowley, M. Lockwood, Excitation and decay of solar wind-driven flows in the magnetosphere-ionophere system, in Annales Geophysicae, vol. 10, 1992, pp. 103–115, Copernicus

    Google Scholar 

  • N. Crooker, Dayside merging and cusp geometry. J. Geophys. Res. Space Phys. 84(A3), 951–959 (1979)

    Article  ADS  Google Scholar 

  • J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6(2), 47 (1961)

    Article  ADS  Google Scholar 

  • C.C. Finlay, N. Olsen, L. Tøffner-Clausen, DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model. Earth Planets Space 67(1), 114 (2015)

    Article  ADS  Google Scholar 

  • C.C. Finlay, V. Lesur, E. Thebault, F. Vervelidou, A. Morschhauser, R. Shore, Challenges handling magnetospheric and ionospheric signals in internal geomagnetic field modelling. Space Sci. Rev. (2016, this issue). doi:10.1007/s11214-016-0285-9

    Google Scholar 

  • E. Friis-Christensen, K. Lassen, Large-scale distribution of discrete auroras and field-aligned currents, in Auroral Physics, vol. 1, 1991, pp. 369–381

    Google Scholar 

  • E. Friis-Christensen, H. Lühr, G. Hulot, Swarm: a constellation to study the Earth’s magnetic field. Earth Planets Space 58, 351–358 (2006)

    Article  ADS  Google Scholar 

  • E. Friis-Christensen, J. Wilhjelm, Polar cap currents for different directions of the interplanetary magnetic field in the \(Y\)\(Z\)-plane. J. Geophys. Res. 80, 1248–1260 (1975)

    Article  ADS  Google Scholar 

  • E. Friis-Christensen, K. Lassen, J. Wilhjelm, J.M. Wilcox, W. Gonzales, D.S. Colburn, Critical component of the interplanetary magnetic field responsible for large geomagnetic effects in the polar cap. J. Geophys. Res. 77, 3371–3376 (1972)

    Article  ADS  Google Scholar 

  • E. Friis-Christensen, Y. Kamide, A.D. Richmond, S. Matsushita, Interplanetary magnetic field control of high-latitude electric fields and currents determined from Greenland magnetometer data. J. Geophys. Res. 90, 1325–1338 (1985)

    Article  ADS  Google Scholar 

  • N. Fukushima, Generalized theorem for no ground magnetic effect of vertical currents connected with Pedersen currents in the uniform-conductivity ionosphere. Rep. Ionos. Space Res. Jpn. 30(1–2), 35–40 (1976)

    ADS  Google Scholar 

  • J. Gjerloev, A global ground-based magnetometer initiative. Eos 90(27), 230–231 (2009)

    Article  ADS  Google Scholar 

  • J. Gjerloev, The SuperMAG data processing technique. J. Geophys. Res. Space Phys. 117(A9) (2012)

  • D.L. Green, C.L. Waters, B.J. Anderson, H. Korth, Seasonal and interplanetary magnetic field dependence of the field-aligned currents for both Northern and Southern Hemispheres. Ann. Geophys. 27, 1701–1715 (2009). doi:10.5194/angeo-27-1701-2009

    Article  ADS  Google Scholar 

  • T. Iijima, T. Potemra, L. Zanetti, P. Bythrow, Large-scale Birkeland currents in the dayside polar region during strongly northward IMF: a new Birkeland current system. J. Geophys. Res. Space Phys. 89(A9), 7441–7452 (1984)

    Article  ADS  Google Scholar 

  • Y. Kamide, The auroral electrojets: relative importance of ionospheric conductivities and electric fields, in Auroral Physics, vol. 1, 1991, p. 385

    Google Scholar 

  • J. Kan, L. Lee, Energy coupling function and solar wind-magnetosphere dynamo. Geophys. Res. Lett. 6(7), 577–580 (1979)

    Article  ADS  Google Scholar 

  • K. Kauristie, A. Morschhauser, N. Olsen, C.C. Finlay, R.L. McPherron, J.W. Gjerloev, H.J. Opgenoorth, On the usage of geomagnetic indices for data selection in internal field modelling. Space Sci. Rev. (2016, this issue). doi:10.1007/s11214-016-0301-0

    Google Scholar 

  • L. Kother, M.D. Hammer, C.C. Finlay, N. Olsen, An equivalent source method for modelling the global lithospheric magnetic field. Geophys. J. Int. 203, 553–566 (2015)

    Article  ADS  Google Scholar 

  • K.M. Laundal, S.E. Haaland, N. Lehtinen, J.W. Gjerloev, N. Ostgaard, P. Tenfjord, J.P. Reistad, K. Snekvik, S.E. Milan, S. Ohtani, B.J. Anderson, Birkeland current effects on high-latitude ground magnetic field perturbations. Geophys. Res. Lett. 42(18), 7248–7254 (2015)

    Article  ADS  Google Scholar 

  • K.M. Laundal, J.W. Gjerloev, N. Ostgaard, J.P. Reistad, S.E. Haaland, K. Snekvik, P. Tenfjord, S. Ohtani, S.E. Milan, The impact of sunlight on high-latitude equivalent currents. J. Geophys. Res. (2016). doi:10.1002/2015JA022236

    Google Scholar 

  • S. Milan, Modeling Birkeland currents in the expanding/contracting polar cap paradigm. J. Geophys. Res. Space Phys. 118(9), 5532–5542 (2013)

    Article  ADS  Google Scholar 

  • P.T. Newell, T. Sotirelis, K. Liou, C.-I. Meng, F.J. Rich, A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res. 112(A1) (2007). doi:10.1029/2006JA012015

  • A. Nishida, K. Maezawa, Two basic modes of interaction between the solar wind and the magnetosphere. J. Geophys. Res. 76(10), 2254–2264 (1971)

    Article  ADS  Google Scholar 

  • N. Olsen, H. Lühr, T.J. Sabaka, M. Mandea, M. Rother, L. Tøffner-Clausen, S. Choi, CHAOS – a model of Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data. Geophys. J. Int. 166, 67–75 (2006)

    Article  ADS  Google Scholar 

  • N. Olsen, H. Lühr, C.C. Finlay, L. Tøffner-Clausen, The CHAOS-4 geomagnetic field model. Geophys. J. Int. 1997, 815–827 (2014)

    Article  ADS  Google Scholar 

  • E.D. Pettigrew, S.G. Shepherd, J.M. Ruohoniemi, Climatological patterns of high-latitude convection in the Northern and Southern hemispheres: dipole tilt dependencies and interhemispheric comparison. J. Geophys. Res. 115 (2010). doi:10.1029/2009JA014956

  • P.H. Reiff, J. Burch, IMF \(\mathrm{B}_{\mathrm{y}}\)-dependent plasma flow and Birkeland currents in the dayside magnetosphere: 2. A global model for northward and southward IMF. J. Geophys. Res. Space Phys. 90(A2), 1595–1609 (1985)

    Article  ADS  Google Scholar 

  • A. Ridley, G. Lu, C. Clauer, V. Papitashvili, A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electrodynamics technique. J. Geophys. Res. Space Phys. 103(A3), 4023–4039 (1998)

    Article  ADS  Google Scholar 

  • P. Ritter, H. Lühr, S. Maus, A. Viljanen, High latitude ionospheric currents during very quiet times: their characteristics and predictabilities. Ann. Geophys. 22, 2001–2014 (2004)

    Article  ADS  Google Scholar 

  • S. Vennerstrom, T. Moretto, L. Rastätter, J. Raeder, Field-aligned currents during northward interplanetary magnetic field: Morphology and causes. J. Geophys. Res. Space Phys. 110(A6) (2005)

  • J. Wilhjelm, E. Friis-Christensen, T.A. Potemra, The relationship between ionospheric and field-aligned currents in the dayside cusp. J. Geophys. Res. 83, 5586–5594 (1978)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the International Space Science Institute for inviting them to take part in the Workshop on “Earth’s Magnetic Field” held in Bern in May 2015. The support of the CHAMP mission by the German Aerospace Center (DLR) and the Federal Ministry of Education and Research is gratefully acknowledged. Swarm L1b data were provided by ESA. For the ground magnetometer data we gratefully acknowledge: Intermagnet; USGS, Jeffrey J. Love; CARISMA, PI Ian Mann; CANMOS; The S-RAMP Database, PI K. Yumoto and Dr. K. Shiokawa; The SPIDR database; AARI, PI Oleg Troshichev; The MACCS program, PI M. Engebretson, Geomagnetism Unit of the Geological Survey of Canada; GIMA; MEASURE, UCLA IGPP and Florida Institute of Technology; SAMBA, PI Eftyhia Zesta; 210 Chain, PI K. Yumoto; SAMNET, PI Farideh Honary; The institutes who maintain the IMAGE magnetometer array, PI Eija Tanskanen; PENGUIN; AUTUMN, PI Martin Connors; DTU Space, PI Dr. Rico Behlke; South Pole and McMurdo Magnetometer, PI’s Louis J. Lanzarotti and Alan T. Weatherwax; ICESTAR; RAPIDMAG; PENGUIn; British Artarctic Survey; McMac, PI Dr. Peter Chi; BGS, PI Dr. Susan Macmillan; Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN); GFZ, PI Dr. Juergen Matzka; MFGI, PI B. Heilig; IGFPAS, PI J. Reda; University of L’Aquila, PI M. Vellante; SuperMAG, PI Jesper W. Gjerloev.

We thank the reviewers for valuable and constructive comments and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Friis-Christensen.

Additional information

E. Friis-Christensen, Retired

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friis-Christensen, E., Finlay, C.C., Hesse, M. et al. Magnetic Field Perturbations from Currents in the Dark Polar Regions During Quiet Geomagnetic Conditions. Space Sci Rev 206, 281–297 (2017). https://doi.org/10.1007/s11214-017-0332-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0332-1

Keywords

Navigation