Skip to main content
Log in

Inflight Calibration of the Lunar Reconnaissance Orbiter Camera Wide Angle Camera

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) has acquired more than 250,000 images of the illuminated lunar surface and over 190,000 observations of space and non-illuminated Moon since 1 January 2010. These images, along with images from the Narrow Angle Camera (NAC) and other Lunar Reconnaissance Orbiter instrument datasets are enabling new discoveries about the morphology, composition, and geologic/geochemical evolution of the Moon. Characterizing the inflight WAC system performance is crucial to scientific and exploration results. Pre-launch calibration of the WAC provided a baseline characterization that was critical for early targeting and analysis. Here we present an analysis of WAC performance from the inflight data. In the course of our analysis we compare and contrast with the pre-launch performance wherever possible and quantify the uncertainty related to various components of the calibration process. We document the absolute and relative radiometric calibration, point spread function, and scattered light sources and provide estimates of sources of uncertainty for spectral reflectance measurements of the Moon across a range of imaging conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

References

  • C.H. Acton Jr., Ancillary data services of NASA’s navigation and ancillary information facility. Planet. Space Sci. 44(1), 65–70 (1996)

    Article  ADS  Google Scholar 

  • C.W. Allen, A.N. Cox, Allen’s Astrophysical Quantities (Springer, Berlin, 2000)

    Google Scholar 

  • J.M. Anderson, K.J. Becker, H.H. Kieffer, D.N. Dodd, Real-time control of the robotic lunar observatory telescope. Publ. Astron. Soc. Pac. 111(760), 737–749 (1999)

    Article  ADS  Google Scholar 

  • M. Bass, E.W. Van Stryland, D.R. Williams, W.L. Wolfe, Handbook of Optics, vol. 2 (McGraw-Hill, New York, 2001)

    Google Scholar 

  • J. Bell, M. Wolff, M. Malin, W. Calvin, B. Cantor, M. Caplinger, R. Clancy, K. Edgett, L. Edwards, J. Fahle, et al., Mars Reconnaissance Orbiter Mars Color Imager (MARCI): instrument description, calibration, and performance. J. Geophys. Res., Planets (1991–2012) 114(E8), E08S92 (2009)

    Google Scholar 

  • G.D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems, vol. 4 (SPIE, Bellingham, 2001)

    Book  Google Scholar 

  • E. Bowman-Cisneros, S. Brylow, Lunar Reconnaissance Orbiter Camera Users Guide. LRO Project (NASA GSFC, 2009)

  • S.E. Braden, Analysis of spacecraft data for the study of diverse lunar volcanism and regolith maturation rates. Ph.D. thesis (2013)

  • B.J. Buratti, J.K. Hillier, M. Wang, The lunar opposition surge: observations by clementine. Icarus 124(2), 490–499 (1996)

    Article  ADS  Google Scholar 

  • P.D. Burns, Slanted-edge MTF for digital camera and scanner analysis, in Society for Imaging Science & Technology (Society for Imaging Science & Technology, Springfield, 2000), pp. 135–138

    Google Scholar 

  • K. Chance, R. Kurucz, An improved high-resolution solar reference spectrum for Earth’s atmosphere measurements in the ultraviolet, visible, and near infrared. J. Quant. Spectrosc. Radiat. Transf. 111(9), 1289–1295 (2010)

    Article  ADS  Google Scholar 

  • S. Chandrasekhar, Radiative Transfer (Courier Dover Publications, New York, 1960)

    MATH  Google Scholar 

  • T. Choi, IKONOS satellite on orbit modulation transfer function (MTF) measurement using edge and pulse method. Ph.D. thesis, Electrical Engineering Department, South Dakota State University (2002)

  • B.W. Denevi, M.S. Robinson, A.K. Boyd, H. Sato, B.W. Hapke, B. Hawke, Characterization of space weathering from lunar reconnaissance orbiter camera ultraviolet observations of the Moon. J. Geophys. Res., Planets 119(5), 968–975 (2014)

    Article  ADS  Google Scholar 

  • B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  • D.L. Helder, T. Choi, IKONOS satellite in orbit modulation transfer function (MTF) measurement using edge and pulse method. Electrical Engineering Department, South Dakota State University (2002)

  • J.K. Hillier, B.J. Buratti, K. Hill, Multispectral photometry of the Moon and absolute calibration of the clementine UV/Vis camera. Icarus 141(2), 205–225 (1999)

    Article  ADS  Google Scholar 

  • S.B. Howell, Handbook of CCD Astronomy, vol. 5 (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  • J.R. Janesick, Photon Transfer. SPIE (SPIE, Bellingham, 2007)

    Book  Google Scholar 

  • R.A. Jones, An automated technique for deriving MTFS from edge traces. Photogr. Sci. Eng. 11(2), 102 (1967)

    Google Scholar 

  • R.A. Jones, E.C. Yeadon, Determination of spread function from noisy edge scans. Photogr. Sci. Eng. 13(4), 200 (1969)

    Google Scholar 

  • H.H. Kieffer, T.C. Stone, The spectral irradiance of the Moon. Astron. J. 129(6), 2887 (2005)

    Article  ADS  Google Scholar 

  • Kodak, Device performance specification Kodak KAI 1001 (2012), http://www.ccd.com/pdf/ccd_6.pdf/. Online; accessed 27-July-2015

  • F. Lei, H.J. Tiziani, A comparison of methods to measure the modulation transfer function of aerial survey lens systems from the image structures. Photogramm. Eng. Remote Sens. 54(1), 41–46 (1988)

    Google Scholar 

  • P. Mahanti, D. Humm, R. Stelling, M. Robinson, In-orbit multi-spectral image sharpness assessment for the Lunar Reconnaissance Orbiter Wide Angle Camera, in Aerospace Conference, 2014 IEEE (IEEE Press, New York, 2014), pp. 1–8

    Chapter  Google Scholar 

  • I.S. McLean, Electronic Imaging in Astronomy (Wiley, Chichester, 1997)

    Google Scholar 

  • S.K. McMahon, Overview of the planetary data system. Planet. Space Sci. 44(1), 3–12 (1996)

    Article  ADS  Google Scholar 

  • M. Minnaert, Photometry of the Moon. Planets Satell. 1, 213 (1961)

    ADS  Google Scholar 

  • S.A. Morain, A.M. Budge, Post-Launch Calibration of Satellite Sensors: Proceedings of the International Workshop on Radiometric and Geometric Calibration, December 2003, Mississippi, USA (CRC Press, Boca Raton, 2004)

    Book  Google Scholar 

  • NASA, Nasa announcement of opportunity 2004—lunar reconnaissance orbiter measurement investigations. NNH04ZSS003O (2004)

  • R.M. Nelson, W.D. Smythe, B.W. Hapke, A.S. Hale, Low phase angle laboratory studies of the opposition effect: search for wavelength dependence. Planet. Space Sci. 50(9), 849–856 (2002)

    Article  ADS  Google Scholar 

  • C. Pieters, L. Taylor, D. McKay, S. Wentworth, R. Morris, L. Keller, Spectral characterization of lunar mare soils, in Lunar and Planetary Science Conference, vol. 31, (2000) p. 1865

    Google Scholar 

  • M. Robinson, LRO MOON LROC 5 RDR V1.0. NASA Planetary Data System (PDS) LRO-L-LROC-5-RDR-V1.0 (2009)

  • M.S. Robinson, E. Malaret, T. White, A radiometric calibration for the clementine HIRES camera. J. Geophys. Res., Planets (1991–2012) 108(E4), 5028 (2003)

    Article  ADS  Google Scholar 

  • M. Robinson, S. Brylow, M. Tschimmel, D. Humm, S. Lawrence, P. Thomas, B. Denevi, E. Bowman-Cisneros, J. Zerr, M. Ravine, et al., Lunar reconnaissance orbiter camera (LROC) instrument overview. Space Sci. Rev. 150(1), 81–124 (2010)

    Article  ADS  Google Scholar 

  • H. Sato, M. Robinson, P. Mahanti, A. Boyd, Temperature dependent spectral responsivity of the LROC WAC, in Lunar and Planetary Institute Science Conference Abstracts, vol. 44 (2013), p. 2412

    Google Scholar 

  • H. Sato, M. Robinson, B. Hapke, B. Denevi, A. Boyd, Resolved Hapke parameter maps of the Moon. J. Geophys. Res., Planets 119(8), 1775–1805 (2014)

    Article  ADS  Google Scholar 

  • F. Scholten, J. Oberst, K.-D. Matz, T. Roatsch, M. Wählisch, E. Speyerer, M. Robinson, GLD100: the near-global lunar 100 m raster DTM from LROC WAC stereo image data. J. Geophys. Res., Planets (1991–2012) 117(E12), 00H17 (2012)

    Google Scholar 

  • F. Scott, R.M. Scott, R.V. Shack, The use of edge gradients in determining modulation-transfer functions. Photogr. Sci. Eng. 7(6), 345–349 (1963)

    Google Scholar 

  • J.J. Shea, Lunar limb knife-edge optical transfer function measurements. J. Electron. Imaging 8(2), 196–208 (1999)

    Article  ADS  Google Scholar 

  • D.L. Snyder, A.M. Hammoud, R.L. White, Image recovery from data acquired with a charge-coupled-device camera. J. Opt. Soc. Am. A 10(5), 1014–1023 (1993)

    Article  ADS  Google Scholar 

  • E.J. Speyerer, M.S. Robinson, Persistently illuminated regions at the lunar poles: ideal sites for future exploration. Icarus 222(1), 122–136 (2013)

    Article  ADS  Google Scholar 

  • T.C. Stone, H.H. Kieffer, Assessment of uncertainty in ROLO lunar irradiance for on-orbit calibration, in Optical Science and Technology, the SPIE 49th Annual Meeting, International Society for Optics and Photonics (SPIE, Bellingham, 2004), pp. 300–310

    Google Scholar 

  • T.C. Stone, H.H. Kieffer, Use of the Moon to support on-orbit sensor calibration for climate change measurements, in SPIE Optics + Photonics, International Society for Optics and Photonics (SPIE, Bellingham, 2006), p. 62960

    Google Scholar 

  • L.A. Taylor, C.M. Pieters, L.P. Keller, R.V. Morris, D.S. McKay, Lunar mare soils: space weathering and the major effects of surface-correlated nanophase Fe. J. Geophys. Res., Planets (1991–2012) 106(E11), 27985–27999 (2001)

    Article  ADS  Google Scholar 

  • G. Thuillier, L. Floyd, T.N. Woods, R. Cebula, E. Hilsenrath, M. Hersé, D. Labs, Solar irradiance reference spectra, in Solar Variability and Its Effects on Climate (2003), pp. 171–194

    Google Scholar 

  • USGS, ROLO overview (2014). http://www.moon-cal.org/main_overview.php

  • R. Vondrak, J. Keller, G. Chin, J. Garvin, Lunar reconnaissance orbiter (LRO): observations for lunar exploration and science. Space Sci. Rev. 150(1–4), 7–22 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shane Thompson, Zack Bowles, and Robert Lanphear of the LRO Operations team at Arizona State University and the LRO Mission Operations team at Goddard Space Flight Center for their help with commanding experimental images for the calibration, Emerson Speyerer for helping with identifying monochrome images for investigating stray-light issues, and Kristen Paris for help with proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mahanti.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

This paper is a Special Communication, related to the topical volume on ‘Lunar Reconnaissance Orbiter Mission’, Space Science Reviews, Volume 150, 2010, guest edited by R.R. Vondrak, J.W. Keller and C.T. Russell.

Appendix: Obtaining a Calibrated WAC Image

Appendix: Obtaining a Calibrated WAC Image

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahanti, P., Humm, D.C., Robinson, M.S. et al. Inflight Calibration of the Lunar Reconnaissance Orbiter Camera Wide Angle Camera. Space Sci Rev 200, 393–430 (2016). https://doi.org/10.1007/s11214-015-0197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-015-0197-0

Keywords

Navigation