Skip to main content
Log in

Geochemical Reservoirs and Timing of Sulfur Cycling on Mars

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Sulfate-dominated sedimentary deposits are widespread on the surface of Mars, which contrasts with the rarity of carbonate deposits, and indicates surface waters with chemical features drastically different from those on Earth. While the Earth’s surface chemistry and climate are intimately tied to the carbon cycle, it is the sulfur cycle that most strongly influences the Martian geosystems. The presence of sulfate minerals observed from orbit and in-situ via surface exploration within sedimentary rocks and unconsolidated regolith traces a history of post-Noachian aqueous processes mediated by sulfur. These materials likely formed in water-limited aqueous conditions compared to environments indicated by clay minerals and localized carbonates that formed in surface and subsurface settings on early Mars. Constraining the timing of sulfur delivery to the Martian exosphere, as well as volcanogenic H2O is therefore central, as it combines with volcanogenic sulfur to produce acidic fluids and ice. Here, we reassess and review the Martian geochemical reservoirs of sulfur from the innermost core, to the mantle, crust, and surficial sediments. The recognized occurrences and the mineralogical features of sedimentary sulfate deposits are synthesized and summarized. Existing models of formation of sedimentary sulfate are discussed and related to weathering processes and chemical conditions of surface waters. We also review existing models of sulfur content in the Martian mantle and analyze how volcanic activities may have transferred igneous sulfur into the exosphere and evaluate the mass transfers and speciation relationships between volcanic sulfur and sedimentary sulfates. The sedimentary clay-sulfate succession can be reconciled with a continuous volcanic eruption rate throughout the Noachian-Hesperian, but a process occurring around the mid-Noachian must have profoundly changed the composition of volcanic degassing. A hypothetical increase in the oxidation state or in water content of Martian lavas or a decrease in atmospheric pressure is necessary to account for such a change in composition of volcanic gases. This would allow the pre mid-Noachian volcanic gases to be dominated by water and carbon-species but late Noachian and Hesperian volcanic gases to be sulfur-rich and characterized by high SO2 content. Interruption of early dynamo and impact ejection of the atmosphere may have decreased the atmospheric pressure during the early Noachian whereas it remains unclear how the redox state or water content of lavas could have changed. Nevertheless, volcanic emission of SO2 rich gases since the late Noachian can explain many features of Martian sulfate-rich regolith, including the mass of sulfate and the particular chemical features (i.e. acidity) of surface waters accompanying these deposits. How SO2 impacted on Mars’s climate, with possible short time scale global warming and long time scale cooling effects, remains controversial. However, the ancient wet and warm era on Mars seems incompatible with elevated atmospheric sulfur dioxide because conditions favorable to volcanic SO2 degassing were most likely not in place at this time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • A. Aiuppa, M. Burton, T. Caltabiano, G. Giudice, S. Guerrieri, M. Liuzzo, F. Mure, G. Salerno, Unusually large magmatic CO2 gas emissions prior to a basaltic paroxysm. Geophys. Res. Lett. 37, L17303 (2010). doi:10.1029/2010GL043837

    Article  ADS  Google Scholar 

  • C. Allegre, G. Manhes, E. Lewin, Chemical composition of the Earth and the volatility control on planetary genetics. Earth Planet. Sci. Lett. 185, 49–69 (2001)

    Article  ADS  Google Scholar 

  • J.C. Andrews-Hanna, K.W. Lewis, Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs. J. Geophys. Res. Planets 116, E02007 (2011)

    Article  ADS  Google Scholar 

  • S. Barabash, A. Fedorov, R. Lundin, J.A. Sauvaud, Martian atmospheric erosion rates. Science 315, 501–503 (2007)

    Article  ADS  Google Scholar 

  • D. Baratoux, M.J. Toplis, M. Monnereau, O. Gasnault, Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature 472, 338–341 (2011). doi:10.1038/nature09903

    Article  ADS  Google Scholar 

  • H. Behrens, F. Gaillard, Geochemical aspects of melts: volatiles and redox behavior. Elements 2, 275–280 (2006)

    Article  Google Scholar 

  • G. Berger, M.J. Toplis, E. Treguier, C. d’Uston, P. Pinet, Evidence in favor of ephemeral and transient water during alteration at Meridiani Planum, Mars. Am. Mineral. 94, 1279–1282 (2009)

    Article  ADS  Google Scholar 

  • R.A. Berner, Chemical weathering and its effects on atmospheric CO2 and climate. Rev. Mineral. 31, 565–583 (1995)

    Google Scholar 

  • R.A. Berner, GEOCARBSULF: a combined model for Phanerozoic atmospheric O(2) and CO(2). Geochim. Cosmochim. Acta 70, 5653–5664 (2005)

    Article  ADS  Google Scholar 

  • J.P. Bibring et al., Global mineralogical and aqueous mars history derived from OMEGA/Mars express data. Science 312, 400–404 (2006)

    Article  ADS  Google Scholar 

  • J.P. Bibring et al., Coupled ferric oxides and sulfates on the Martian surface. Science 317(5842), 1206–1210 (2007)

    Article  ADS  Google Scholar 

  • J.L. Bishop et al., Mineralogy of Juventae Chasma: sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau. J. Geophys. Res. Planets 114, E00D09 (2009)

    Article  ADS  Google Scholar 

  • J. Brückner, G. Dreibus, R. Gellert, S.W. Squyres, H. Wänke, A. Yen, J. Zipfel, Mars exploration rovers: chemical compositions by the APXS, in the Martian Surface: Composition, Mineralogy, and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008), pp. 58–101

    Chapter  Google Scholar 

  • M.A. Bullock, J.M. Moore, Atmospheric conditions on early Mars and the missing layered carbonates. Geophys. Res. Lett. 34, L19201 (2007). doi:10.1029/2007GL030688

    Article  ADS  Google Scholar 

  • A.S. Buono, D. Walker, The Fe-rich liquidus in the Fe-FeS system from 1 bar to 10 GPa. Geochim. Cosmochim. Acta 75, 2072–2087 (2011)

    Article  ADS  Google Scholar 

  • A. Burgisser, B. Scaillet, Redox evolution of a degassing magma rising to the surface. Nature 445, 194–197 (2007)

    Article  ADS  Google Scholar 

  • D.E. Canfield, The evolution of the Earth surface sulfur reservoir. Am. J. Sci. 304, 839–861 (2004)

    Article  Google Scholar 

  • J. Carter, F. Poulet, A. Ody, J.P. Bibring, S. Murchie, Global distribution, composition and setting of hydrous minerals on Mars: a reappraisal, in Lunar and Planetary Science Conference (2011), p. 2593

    Google Scholar 

  • N.L. Chabot, Sulfur contents of the parental metallic cores of magmatic iron meteorites. Geochim. Cosmochim. Acta 68, 3607–3618 (2004)

    Article  ADS  Google Scholar 

  • M.G. Chapman, K.L. Tanaka, Interior trough deposits on Mars: subice volcanoes? J. Geophys. Res. (Planets) 106(E5), 10087–10100 (2001)

    Article  ADS  Google Scholar 

  • V. Chevrier, J.-P. Lorand, V. Sautter, Sulfide petrology of four nakhlites: Northwest Africa 817, Northwest Africa 998, Nakhla, and Governador Valadares. Meteorit. Planet. Sci. 46, 769–784 (2011). doi:10.1111/j.1945-5100.2011.01189.x

    Article  ADS  Google Scholar 

  • V. Chevrier, F. Poulet, J.-P. Bibring, Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates. Nature 448, 60–63 (2007). doi:10.1038/nature05961

    Article  ADS  Google Scholar 

  • P.R. Christensen et al., Detection of crystalline hematite mineralization on Mars by the thermal emission spectrometer: evidence for near-surface water. J. Geophys. Res. (Planets) 105(E4), 9623–9642 (2000)

    Article  ADS  Google Scholar 

  • P.R. Christensen, R.V. Morris, M.D. Lane, J.L. Bandfield, M.C. Malin, Global mapping of Martian hematite mineral deposits: remnants of water-driven processes on early Mars. J. Geophys. Res. (Planets) 106(E10), 23873–23885 (2001)

    Article  ADS  Google Scholar 

  • B.C. Clark, A.K. Baird, H.J. Rose Jr., P. Toulmin III, R.P. Christian, W.C. Kelliher, A.J. Castro, C.D. Rowe, K. Keil, G.R. Huss, The viking X ray fluorescence experiment: analytical methods and early results. J. Geophys. Res. 82(28), 4577–4594 (1977). doi:10.1029/JS082i028p04577

    Article  ADS  Google Scholar 

  • B.C. Clark, A.K. Baird, Is the martian lithosphere sulfur rich. J. Geophys. Res. 84, 8395–8403 (1979)

    Article  ADS  Google Scholar 

  • B.C. Clark, Geochemical components in martian soil. Geochim. Cosmochim. Acta 57, 4575–4581 (1993). doi:10.1016/0016-7037(93)90183-W

    Article  ADS  Google Scholar 

  • B.C. Clark, R.V. Morris et al., Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet. Sci. Lett. 240(1), 73–94 (2005)

    Article  ADS  Google Scholar 

  • E.A. Cloutis et al., Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus 184(1), 121–157 (2006)

    Article  ADS  Google Scholar 

  • R.A. Craddock, R. Greeley, Minimum estimates of the amount and timing of gases released into the martian atmosphere from volcanic eruptions. Icarus 204, 512–526 (2009)

    Article  ADS  Google Scholar 

  • V. Debaille, A.D. Brandon, C. O’Neill, Q.-Z. Yin, B. Jacobsen, Early martian mantle overturn inferred from isotopic composition of nakhlite meteorites. Nat. Geosci. 2, 548–552 (2009). doi:10.1038/NGEO579

    Article  ADS  Google Scholar 

  • E. Dehouck, V. Chevrier, A. Gaudin, N. Mangold, P.-E. Mathé, P. Rochette, Evaluating the role of sulfide-weathering in the formation of sulfates or carbonates on Mars. Geochim. Cosmochim. Acta 90, 47–63 (2012)

    Article  ADS  Google Scholar 

  • J.E. Dixon, D.A. Clague, P. Wallace, R. Poreda, Volatiles in alkalic basalts from the North Arch volcanic field, Hawaii: extensive degassing of deep submarine-erupted alkalic series lavas. J. Petrol. 38, 911–939 (1997)

    Article  Google Scholar 

  • G. Dreibus, H. Palme, Cosmochemical constraints on the sulfur content in the Earth’s core. Geochim. Cosmochim. Acta 60, 1125–1130 (1996)

    Article  ADS  Google Scholar 

  • G. Dreibus, H. Wanke, Mars, a volatile-rich planet. Meteoritics 20, 367–381 (1985)

    ADS  Google Scholar 

  • D.S. Ebel, Sulfur in extraterrestrial bodies and the deep earth. In sulfur in magmas and melts: its importance for natural and technical processes. Rev. Mineral. Geochem. 73, 315–336 (2010)

    Article  Google Scholar 

  • B.L. Ehlmann, J.F. Mustard, S.L. Murchie, F.F. Poulet, J.L. Bishop, A.J. Brown, W.M. Calvin, R.N. Clark, D.J.D. Marais, R.E. Milliken, L.H. Roach, T.L. Roush, G.A. Swayze, J.J. Wray, Orbital identification of carbonate-bearing rocks on Mars. Science 322, 1828–1832 (2008)

    Article  ADS  Google Scholar 

  • B.L. Ehlmann et al., Geochemical consequences of widespread clay mineral formation in Mars’ ancient crust. Space Sci. Rev. (2012, this issue). doi:10.1007/s11214-012-9930-0

  • L.T. Elkins-Tanton, P.C. Hess, E.M. Parmentier, Possible formation of ancient crust on Mars through magma ocean processes. J. Geophys. Res. 110, E12S01 (2005). doi:10.1029/2005JE002480

    Article  ADS  Google Scholar 

  • S. Fabre, G. Berger, A. Nédélec, Continental weathering under high-CO2 atmospheres during Precambrian times. G-cubed 12 (2011). doi:10.1029/2010GC003444

  • A.G. Fairen, D. Fernandez-Remolar, J.M. Dohm, V.R. Baker, R. Amils, Inhibition of carbonate synthesis in acidic oceans on early Mars. Nature 431, 423–426 (2004)

    Article  ADS  Google Scholar 

  • J. Farquhar, J. Savrino, T.L. Jackson, M.H. Thiemnes, Evidence of atmospheric sulfur in the martian regolith from sulfur isotopes in meteorites. Nature 404, 50–52 (2000). doi:10.1038/35003517

    Article  ADS  Google Scholar 

  • W.H. Farrand, T.D. Glotch, J.W. Rice, J.A. Hurowitz, G.A. Swayze, Discovery of jarosite within the Mawrth Vallis region of Mars: implications for the geologic history of the region. Icarus 204(2), 478–488 (2009)

    Article  ADS  Google Scholar 

  • C.I. Fassett, J.W. Head, Sequence and timing of conditions on early Mars. Icarus 211, 1204–1214 (2011)

    Article  ADS  Google Scholar 

  • Y.W. Fei, C.T. Prewitt, H.K. Mao, C.M. Bertka, Structure and density of FeS at high-pressure and high-temperature and the internal structure of Mars. Science 268, 1892–1894 (1995)

    Article  ADS  Google Scholar 

  • Y. Fei, C.M. Bertka, L.W. Finger, High pressure iron sulfur compound, Fe3S2, and melting relations in the Fe–FeS system. Science 275, 1621–1623 (1997)

    Article  Google Scholar 

  • J. Filiberto, A.H. Treiman, Martian magmas contained abundant chlorine, but little water. Geology 37, 1087–1090 (2009). doi:10.1130/G30488A.1

    Article  Google Scholar 

  • C.J.B. Fincham, F.D. Richardson, The behaviour of sulfur in silicate and aluminate melts. Proc. R. Soc. Lond. 223A, 40–61 (1954)

    ADS  Google Scholar 

  • K.E. Fishbaugh, F. Poulet, V. Chevrier, Y. Langevin, J.P. Bibring, On the origin of gypsum in the Mars north polar region. J. Geophys. Res. Planets 112(E7), E07002 (2007)

    Article  ADS  Google Scholar 

  • J. Flahaut, C. Quantin, P. Allemand, P. Thomas, Morphology and geology of the ILD in Capri/Eos Chasma (Mars) from visible and infrared data. Icarus 207(1), 175–185 (2010a)

    Article  ADS  Google Scholar 

  • J. Flahaut, C. Quantin, P. Allemand, P. Thomas, L. Le Deit, Identification, distribution and possible origins of sulfates in Capri Chasma (Mars), inferred from CRISM data. J. Geophys. Res. Planets 115, E11007 (2010b)

    Article  ADS  Google Scholar 

  • C.N. Foley, T.E. Economou, R.N. Clayton, J. Brückner, G. Dreibus, R. Rieder, H. Wänke, Martian surface chemistry: APXS results from the Pathfinder landing site, in The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008), pp. 35–57

    Google Scholar 

  • F. Forget, R.T. Pierrehumbert, Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278, 1273–1276 (1997)

    Article  ADS  Google Scholar 

  • F. Fueten, J. Flahaut, L. Le Deit, R. Stesky, E. Hauber, K. Gwinner, Interior layered deposits within a perched basin, southern Coprates Chasma, Mars: evidence for their formation, alteration, and erosion. J. Geophys. Res. Planets 116, E02003 (2011)

    Article  ADS  Google Scholar 

  • F. Gaillard, B. Scaillet, The sulfur content of volcanic gases on Mars. Earth Planet. Sci. Lett. 279, 34–43 (2009)

    Article  ADS  Google Scholar 

  • F. Gaillard, M. Pichavant, B. Scaillet, Experimental determination of activities of FeO and Fe2O3 components in hydrous silicic melts under oxidizing conditions. Geochim. Cosmochim. Acta 67, 4389–4409 (2003a)

    Article  ADS  Google Scholar 

  • F. Gaillard, B.C. Schmidt, S. Mackwell, C. McCammon, Rate of hydrogen-iron redox exchange in silicate melts and glasses. Geochim. Cosmochim. Acta 67, 2427–2441 (2003b)

    Article  Google Scholar 

  • F. Gaillard, B. Scaillet, N.T. Arndt, Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 229–232 (2011)

    Article  ADS  Google Scholar 

  • A. Gendrin, N. Mangold, J.P. Bibring, Y. Langevin, B. Gondet, F. Poulet, G. Bonello, C. Quantin, J. Mustard, R. Arvidson, S. LeMouélic, Sulfates in martian layered terrains: the OMEGA/Mars Express view. Science 307, 1587–1591 (2005)

    Article  ADS  Google Scholar 

  • E.K. Gibson, C.B. Moore, T.M. Primus, C.F. Lewis, Sulfur in achondritic meteorites. Meteoritics 20, 503–511 (1985)

    ADS  Google Scholar 

  • T.D. Glotch, A.D. Rogers, Evidence for aqueous deposition of hematite- and sulfate-rich light-toned layered deposits in Aureum and Iani Chaos, Mars. J. Geophys. Res. Planets 112(E6), E06001 (2007)

    Article  ADS  Google Scholar 

  • T.D. Glotch, P.R. Christensen, Geologic and mineralogic mapping of Aram Chaos: evidence for a water-rich history. J. Geophys. Res. Planets 110(E9), E09006 (2005)

    Article  ADS  Google Scholar 

  • T.D. Glotch, J.L. Bandfield, P.R. Christensen, W.M. Calvin, S.M. McLennan, B.C. Clark, A.D. Rogers, S.W. Squyres, Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation. J. Geophys. Res. Planets 111(E12), E12S03 (2006a)

    Article  ADS  Google Scholar 

  • T.D. Glotch, P.R. Christensen, T.G. Sharp, Fresnel modeling of hematite crystal surfaces and application to martian hematite spherules. Icarus 181(2), 408–418 (2006b)

    Article  ADS  Google Scholar 

  • M.P. Golombek et al., Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars. J. Geophys. Res. 111(E12), 1–14 (2006)

    Article  Google Scholar 

  • R. Greeley, B.D. Schneid, Magma generation on Mars: amounts, rates, and comparisons with Earth, Moon, and Venus. Science 254, 996–998 (1991)

    Article  ADS  Google Scholar 

  • J.L. Griffes, R.E. Arvidson, F. Poulet, A. Gendrin, Geologic and spectral mapping of etched terrain deposits in northern Meridiani Planum. J. Geophys. Res. Planets 112(E8), E08S09 (2007)

    Article  ADS  Google Scholar 

  • M. Grott, A. Morschhauser, D. Breuer, E. Hauber, Volcanic outgassing of CO2 and H2O on Mars. Earth Planet. Sci. Lett. 308, 391–400 (2011)

    Article  ADS  Google Scholar 

  • J. Grotzinger et al., Sedimentary textures formed by aqueous processes, Erebus crater, Meridiani Planum, Mars. Geology 34(12), 1085–1088 (2006)

    Article  ADS  Google Scholar 

  • J.P. Grotzinger, R.E. Arvidson, J.F. Bell, W. Calvin, B.C. Clark, D.A. Fike, M. Golombek, R. Greeley, A. Haldemann, K.E. Herkenhoff, B.L. Jolliff, A.H. Knoll, M. Malin, S.M. McLennan, T. Parker, L. Soderblom, J.N. Sohl-Dickstein, S.W. Squyres, N.J. Tosca, W.A. Watters, Stratigraphy, sedimentology and depositional environment of the Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 11–72 (2005)

    Article  ADS  Google Scholar 

  • I. Halevy, M.T. Zuber, D.P. Schrag, A sulfur dioxide climate feedback on early Mars. Science 318, 1903 (2007). doi:10.1126/science.1147039

    Article  ADS  Google Scholar 

  • C.D.K. Herd, L.E. Borg, J.H. Jones, J.J. Papike, Oxygen fugacity and geochemical variations in the martian basalts: implications for martian basalt petrogenesis and the oxidation state of the upper mantle of Mars. Geochim. Cosmochim. Acta 66(11), 2025–2036 (2002)

    Article  ADS  Google Scholar 

  • C.D.K. Herd, A.H. Treiman, G.A. McKay, C.K. Shearer, Light lithophile elements in martian basalts: evaluating the evidence for magmatic water degassing. Geochim. Cosmochim. Acta 69, 2431–2440 (2005)

    Article  ADS  Google Scholar 

  • K.E. Herkenhoff, M.P. Golombek, E.A. Guinness, J.B. Johnson, A. Kusack, L. Richter, R.J. Sullivan, S. Gorevan, In situ observations of the physical properties of the Martian surface, in The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008), pp. 451–467

    Chapter  Google Scholar 

  • A. Holzheid, T.L. Grove, Sulfur saturation limits in silicate melts and their implications for core formation scenarios for terrestrial planets. Am. Mineral. 87, 227–237 (2002)

    Google Scholar 

  • J.A. Hurowitz, S.M. McLennan, A ∼3.5 Ga record of water-limited, acidic conditions on Mars. Earth Planet. Sci. Lett. 260, 432–443 (2007)

    Article  ADS  Google Scholar 

  • J.A. Hurowitz, W.W. Fischer, N.J. Tosca, R.E. Milliken, Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars. Nat. Geosci. 3, 323–326 (2010)

    Article  ADS  Google Scholar 

  • J.A. Hurowitz, S.M. McLennan, N.J. Tosca, R.E. Arvidson, J.R. Michalski, D.W. Ming, C. Schöder, S.W. Squyres, In-situ and experimental evidence for acidic weathering on Mars. J. Geophys. Res. 111, E02S19 (2006). doi:10.1029/2005JE002515

    Article  ADS  Google Scholar 

  • B.M. Hynek, R.E. Arvidson, R.J. Phillips, Geologic setting and origin of Terra Meridiani hematite deposit on Mars. J. Geophys. Res. 107(E10), 5088 (2002). doi:10.1029/2002JE001891

    Article  Google Scholar 

  • G. Iacono-Marziano, Y. Morizet, E. Le-Trong, F. Gaillard, New experimental data and semi-empirical parameterization of H2O-CO2 solubility in mafic melts. Geochim. Cosmochim. Acta 97, 1–23 (2012). doi:10.1016/j.gca.2012.08.035

    Article  Google Scholar 

  • B.M. Jakosky, R.J. Phillips, Mars’ volatile and climate history. Nature 412, 237–244 (2001)

    Article  ADS  Google Scholar 

  • S.S. Johnson, A.A. Pavlov, M.A. Mischna, Fate of SO2 in the ancient Martian atmosphere: implications for transient greenhouse warming. J. Geophys. Res. (Planets) 114, E11011 (2009). doi:10.1029/2008JE003313

    Article  ADS  Google Scholar 

  • J.R. Johnson, J.F. Bell, E. Cloutis, M. Staid, W.H. Farrand, T. Mccoy, M. Rice, A. Wang, A. Yen, Mineralogic constraints on sulfur-rich soils from Pancam spectra at Gusev crater, Mars. Geophys. Res. Lett. 34(13), L13202 (2007)

    Article  ADS  Google Scholar 

  • S.S. Johnson, M.A. Mischna, T.L. Grove, M.T. Zuber, Sulfur-induced greenhouse warming on early Mars. J. Geophys. Res. 113, E08005 (2008). doi:10.1029/2007JE002962

    Article  Google Scholar 

  • L. Keszthelyi, S. Self, T. Thordarson, Flood lavas on Earth, Io and Mars. J. Geol. Soc. 163, 253–264 (2006). doi:10.1144/0016-764904-503

    Article  Google Scholar 

  • M.R. Kilburn, B.J. Wood, Metal-silicate partitioning and the incompatibility of S and Si during core formation. Earth Planet. Sci. Lett. 152, 139–148 (1997)

    Article  ADS  Google Scholar 

  • P.L. King, H.Y. McSween, Effects of H2O, pH, and oxidation state on the stability of Fe minerals on Mars. J. Geophys. Res. 110, E12S10 (2005). doi:10.1029/2005JE002482

    Article  Google Scholar 

  • P.L. King, S.M. McLennan, Sulfur on Mars. Elements 6(2), 107–112 (2010)

    Article  Google Scholar 

  • P.L. King, D.T. Lescinsky, H.W. Nesbitt, The composition and evolution of primordial solutions on Mars, with application to other planetary bodies. Geochim. Cosmochim. Acta 68, 4993–5008 (2004)

    Article  ADS  Google Scholar 

  • L.P. Knauth, D.M. Burt, K.H. Wohletz, Impact origin of sediments at the opportunity landing site on Mars. Nature 438, 1123–1128 (2005)

    Article  ADS  Google Scholar 

  • S.P. Kounaves et al., Soluble sulfate in the martian soil at the Phoenix landing site. Geophys. Res. Lett. 37, L09201 (2010)

    Article  Google Scholar 

  • M.D. Kraft, J.R. Michalski, T.G. Sharp, Effects of pure silica coatings on thermal emission spectra of basaltic rocks: considerations for Martian surface mineralogy. Geophys. Res. Lett. 30(24), 2288 (2003)

    Article  Google Scholar 

  • M.D. Lane, P.R. Christensen, Thermal infrared emission spectroscopy of salt minerals predicted for Mars. Icarus 135(2), 528–536 (1998)

    Article  ADS  Google Scholar 

  • M.D. Lane, J.L. Bishop, M.D. Dyar, P.L. King, M. Parente, B.C. Hyde, Mineralogy of the Paso Robles soils on Mars. Am. Mineral. 93(5–6), 728–739 (2008)

    Article  Google Scholar 

  • Y. Langevin, F. Poulet, J.P. Bibring, B. Gondet, Sulfates in the North polar region of mars detected by OMEGA/Mars express. Science 307(5715), 1584–1586 (2005)

    Article  ADS  Google Scholar 

  • L. Le Deit, S. Le Mouelic, O. Bourgeois, J.P. Combe, D. Mege, C. Sotin, A. Gendrin, E. Hauber, N. Mangold, J.-P. Bibring, Ferric oxides in East Candor Chasma, Valles Marineris (Mars) inferred from analysis of OMEGA/Mars Express data: identification and geological interpretation. J. Geophys. Res. Planets 113(E7), E07001 (2008)

    Article  ADS  Google Scholar 

  • L. Le Deit, O. Bourgeois, D. Mege, E. Hauber, S. Le Mouelic, M. Masse, R. Jaumann, J.-P. Bibring, Morphology, stratigraphy, and mineralogical composition of a layered formation covering the plateaus around Valles Marineris, Mars: implications for its geological history. Icarus 208(2), 684–703 (2010)

    Article  ADS  Google Scholar 

  • J. Li, C.B. Agee, Geochemistry of mantle-core differentiation at high pressure. Nature 381, 686–689 (1996)

    Article  ADS  Google Scholar 

  • J. Li, C.B. Agee, Element partitioning constraints on the light element composition of the Earth’s core. Geophys. Res. Lett. 28, 81–84 (2001). doi:10.1029/2000GL012114

    Article  ADS  Google Scholar 

  • K.A. Lichtenberg et al., Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars. J. Geophys. Res. Planets 115, E00D17 (2010)

    Article  Google Scholar 

  • J.-P. Lorand, V. Chevrier, V. Sautter, Sulfide mineralogy and redox conditions in some Shergottites. Meteorit. Planet. Sci. Lett. 40, 1257–1272 (2005)

    Article  ADS  Google Scholar 

  • T.W. Lyons, B.C. Gill, Ancient sulfur cycling and oxygenation of the early biosphere. Elements 6, 93–99 (2010)

    Article  Google Scholar 

  • N. Mangold, A. Gendrin, B. Gondet, S. LeMouelic, C. Quantin, V. Ansan, J.P. Bibring, Y. Langevin, P. Masson, G. Neukum, Spectral and geological study of the sulfate-rich region of West Candor Chasma, Mars. Icarus 194(2), 519–543 (2008)

    Article  ADS  Google Scholar 

  • N. Mangold, L. Roach, R. Milliken, S. Le Mouelic, V. Ansan, J.P. Bibring, P. Masson, J.F. Mustard, S. Murchie, G. Neukum, A late Amazonian alteration layer related to local volcanism on Mars. Icarus 207(1), 265–276 (2010)

    Article  ADS  Google Scholar 

  • J.C. Marty, G. Balmino, J. Duron, P. Rosenblatt, S. Le Maistre, A. Rivoldini, V. Dehant, T. Van Hoolst, Martian gravity field model and its time variations from MGS and Odyssey data. Planet. Space Sci. 57, 350–363 (2009)

    Article  ADS  Google Scholar 

  • M. Masse, S. Le Mouelic, O. Bourgeois, J.-P. Combe, L. Le Deit, C. Sotin, J.-P. Bibring, B. Gondet, Y. Langevin, Mineralogical composition, structure, morphology, and geological history of Aram Chaos crater fill on Mars derived from OMEGA Mars Express data. J. Ge ophys. Res. Planets 113(E12), E12006 (2008)

    Article  ADS  Google Scholar 

  • M. Masse, O. Bourgeois, S. Le Mouelic, C. Verpoorter, L. Le Deit, J.P. Bibring, Martian polar and circum-polar sulfate-bearing deposits: sublimation tills derived from the North Polar Cap. Icarus 209(2), 434–451 (2010)

    Article  ADS  Google Scholar 

  • M. Masse, O. Bourgeois, S. Le Mouelic, C. Verpoorter, A. Spiga, L. Le Deit, Wide distribution and glacial origin of Polar Gypsum on Mars. Earth Planet. Sci. Lett. 317, 44–55 (2012)

    Article  ADS  Google Scholar 

  • J. Mavrogenes, H.S.C. O’Neill, The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in magmas. Geochim. Cosmochim. Acta 63, 1173–1180 (1999)

    Article  ADS  Google Scholar 

  • T. McCollom, B.M. Hynek, A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars. Nature 438 (2005)

  • F.M. McCubbin, A. Smirnov, H. Nekvasil, J. Wang, E. Hauri, D.H. Lindsley, Hydrous magmatism on Mars: a source of water for the surface and subsurface during the Amazonian. Earth Planet. Sci. Lett. 292, 132–138 (2010)

    Article  ADS  Google Scholar 

  • F.M. McCubbin, E.H. Hauri, S.M. Elardo, K.E. Vander Kaaden, J.H. Wang, C.K. Shearer, Hydrous melting of the martian mantle produced both depleted and enriched Shergottites. Geology 40, 683–686 (2012). doi:10.1130/G33242.1

    Article  Google Scholar 

  • W.F. McDonough, S.S. Sun, The composition of the Earth. Chem. Geol. 120, 1125–1130 (1995)

    Google Scholar 

  • A.S. McEwen, M.C. Malin, M.H. Carr, W.K. Hartmann, Voluminous volcanism on early Mars revealed in Valles Marineris. Nature 397, 584–586 (1999)

    Article  ADS  Google Scholar 

  • S.M. McLennan, J.P. Grotzinger, The sedimentary rock cycle of Mars, in The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008), pp. 541–577

    Chapter  Google Scholar 

  • S.M. McLennan, J.P. Grotzinger, J.A. Hurowitz, N.J. Tosca, Sulfate geochemistry and the sedimentary rock record of Mars, in Workshop on Martian Sulfates as Records of Atmospheric-Fluid-Rock Interactions. LPI Contribution, vol. 1331 (The Lunar & Planetary Institute, Houston, 2006), p. 54

    Google Scholar 

  • S.M. McLennan, Geochemistry of sedimentary processes on Mars, in Mars Sedimentology, ed. by J.P. Grotzinger, R.E. Milliken. SEPM Special Publication (2012)

    Google Scholar 

  • S.M. McLennan, J.F. Bell, W.M. Calvin, P.R. Christensen, B.C. Clark, P.A. de Souza, J. Farmer, W.H. Farrand, D.A. Fike, R. Gellert, A. Ghosh, T.D. Glotch, J.P. Grotzinger, B. Hahn, K.E. Herkenhoff, J.A. Hurowitz, J.R. Johnson, S.S. Johnson, B. Jolliff, G. Klingelhöfer, A.H. Knoll, Z. Learner, M.C. Malin, H.Y. McSween, J. Pocock, S.W. Ruff, L.A. Soderblom, S.W. Squyres, N.J. Tosca, W.A. Watters, M.B. Wyatt, A. Yen, Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 95–121 (2005)

    Article  ADS  Google Scholar 

  • H.Y. McSween, G.J. Taylor, M.B. Wyatt, Elemental composition of the Martian crust. Science 324, 736–739 (2009)

    Article  ADS  Google Scholar 

  • H.Y. McSween, I.O. McGlynn, A.D. Rogers, Determining the modal mineralogy of Martian soils. J. Geophys. Res. Planets 115, E00F12 (2010)

    Article  ADS  Google Scholar 

  • H.Y. McSween, T.L. Grove, R.C. Lentz, J.C. Dann, A.H. Holzheid, L.R. Riciputi, J.G. Ryan, Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. Nature 409, 487–490 (2001)

    Article  ADS  Google Scholar 

  • H.J. Melosh, A.M. Vickery, Impact erosion of the primordial atmosphere of Mars. Nature 338, 487–489 (1989)

    Article  ADS  Google Scholar 

  • J.M. Metz, J.P. Grotzinger, D.M. Rubin, K.W. Lewis, S.W. Squyres, J.F. Bell, Sulfate-rich eolian and wet interdune deposits, Erebus crater, Meridiani Planum, Mars. J. Sediment. Res. 79, 247–264 (2009)

    Article  ADS  Google Scholar 

  • C. Meyer Jr., Website: http://curator.jsc.nasa.gov/antmet/mmc/index.cfm (2008)

  • J.R. Michalski, P.B. Niles, Deep crustal carbonate rocks exposed by meteor impact on Mars. Nat. Geosci. 3, 751–755 (2010)

    Article  ADS  Google Scholar 

  • J. Michalski, P.B. Niles, Atmospheric origin of Martian interior layered deposits: links to climate change and the global sulfur cycle. Geology 40, 419–422 (2012)

    Article  Google Scholar 

  • J.R. Michalski, J.P. Bibring, F. Poulet, D. Loizeau, N. Mangold, E.N. Dobrea et al., The Mawrth Vallis region of Mars: a potential landing site for the Mars Science Laboratory (MSL) mission. Astrobiology 10, 687–703 (2010)

    Article  ADS  Google Scholar 

  • C. Milbury, G. Schubert, Search for the global signature of the Martian Dynamo. J. Geophys. Res. 115, E10010 (2010)

    Article  ADS  Google Scholar 

  • R.E. Milliken et al., Opaline silica in young deposits on Mars. Geology 36(11), 847–850 (2008)

    Article  ADS  Google Scholar 

  • R.E. Milliken, J.P. Grotzinger, B.J. Thomson, Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater. Geophys. Res. Lett. 37, L04201 (2010)

    Article  Google Scholar 

  • A.G. Monders, E. Médard, T.L. Grove, Phase equilibrium investigations of the Adirondack class basalts from the Gusev plains, Gusev crater, Mars. Meteorit. Planet. Sci. 42, 131–148 (2007)

    Article  ADS  Google Scholar 

  • G. Morard, D. Andrault, N. Guignot, C. Sanloup, M. Mezouar, S. Petitgirard, G. Fiquet, In situ determination of Fe–Fe3S phase diagram and liquid structural properties up to 65 GPa. Earth Planet. Sci. Lett. 272, 620–626 (2008)

    Article  ADS  Google Scholar 

  • Y. Morizet, M. Paris, F. Gaillard, B. Scaillet, C-O-H fluid solubility in haplobasalt under reducing conditions: an experimental study. Chem. Geol. 279, 1–16 (2010)

    Article  Google Scholar 

  • R.V. Morris, G. Klingelhofer, C. Schroder, D.S. Rodionov, A. Yen, D.W. Ming et al., Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. J. Geophys. Res. Planets 111, 27 (2006)

    Google Scholar 

  • S.L. Murchie, J.F. Mustard, B.L. Ehlmann, R.E. Milliken, J.L. Bishop, N.K. McKeown, E.Z.N. Dobrea, F.P. Seelos, D.L. Buczkowski, S.M. Wiseman, R.E. Arvidson, J.J. Wray, G. Swayze, R.N. Clark, D.J.D. Marais, A.S. McEwen, J.P. Bibring, A synthesis of martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. (Planets) 114, E00D06 (2009a). doi:10.1029/2009JE003342

    Article  ADS  Google Scholar 

  • S.L. Murchie, L. Roach, F. Seelos, R. Milliken, J. Mustard, R. Arvidson, S. Wisema, K. Lichtenberg, J. Andrews-Hanna, J. Bishop, J.P. Bibring, M. Parente Morris R, Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling. J. Geophys. Res. (Planets) 114, E00D05 (2009b). doi:10.1029/2009JE003343

    Article  ADS  Google Scholar 

  • D.S. Musselwhite, H.A. Dalton, W.S. Kiefer, A.H. Treiman, Experimental petrology of the basaltic shergottite Yamato-980459: implications for the thermal structure of the martian mantle. Meteorit. Planet. Sci. 41, 1271–1290 (2006)

    Article  ADS  Google Scholar 

  • P.B. Niles et al., Geochemistry of carbonates on Mars: implications for climate history and nature of aqueous environments. Space Sci. Rev. (2012, this issue). doi:10.1007/s11214-012-9940-y

  • P.B. Niles, J. Michalski, Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. Nat. Geosci. 2(3), 215–220 (2009)

    Article  ADS  Google Scholar 

  • K. Nishida, H. Terasaki, E. Ohtani, A. Suzuki, The effect of sulfur content on density of the liquid Fe-S at high pressure. Phys. Chem. Miner. 35, 417–423 (2008)

    Article  ADS  Google Scholar 

  • D.K. Nordstrom, Mine waters: acidic to circumneutral. Elements 7, 393–398 (2011)

    Article  Google Scholar 

  • H.S.C. O’Neill, J. Mavrogenes, The sulfide saturation capacity and the sulfur content at sulfide saturation of silicate melts at 1400 °C and 1 bar. J. Petrol. 43, 1049–1087 (2002)

    Article  Google Scholar 

  • E. Ohtani, H. Yurimoto, S. Seto, Element partitioning between metallic liquid, silicate liquid, and lower-mantle minerals: implications for core formation of the Earth. Phys. Earth Planet. Inter. 100, 97–114 (1997)

    Article  ADS  Google Scholar 

  • C.H. Okubo, K.W. Lewis, A.S. McEwen, R.L. Kirk, Relative age of interior layered deposits in southwest Candor Chasma based on high-resolution structural mapping. J. Geophys. Res. Planets 113(E12), E12002 (2008)

    Article  ADS  Google Scholar 

  • R.J. Phillips, M.T. Zuber, S.C. Solomon, M.P. Golombek, B.M. Jakosky, W.B. Banerdt, D.E. Smith, R.M.E. Williams, B.M. Hynek, O. Aharonson, S.A. Hauck, Ancient geodynamics and global-scale hydrology on Mars. Science 291, 2587–2591 (2001)

    Article  ADS  Google Scholar 

  • A. Pommier, F. Gaillard, M. Pichavant, Time-dependent changes of the electrical conductivity of basaltic melts with redox state. Geochim. Cosmochim. Acta 74, 1 (2010)

    Article  Google Scholar 

  • F. Poulet, S. Erard, Nonlinear spectral mixing: quantitative analysis of laboratory mineral mixtures. J. Geophys. Res. Planets 109(E2), E02009 (2004)

    Article  ADS  Google Scholar 

  • F. Poulet, C. Gomez, J.P. Bibring, Y. Langevin, B. Gondet, P. Pinet, G. Belluci, J. Mustard, Martian surface mineralogy from Observatoire pour la Mineralogie, l’Eau, les Glaces et l’Activite on board the Mars Express spacecraft (OMEGA/MEx): global mineral maps. J. Geophys. Res. Planets 112(E8), E08S02 (2007)

    Article  ADS  Google Scholar 

  • F. Poulet, J.P. Bibring, Y. Langevin, J.F. Mustard, N. Mangold, M. Vincendon, B. Gondet, P. Pinet, J.M. Bardintzeff, B. Platevoet, Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data. Icarus 201(1), 69–83 (2009)

    Article  ADS  Google Scholar 

  • F. Poulet, R.E. Arvidson, C. Gomez, R.V. Morris, J.P. Bibring, Y. Langevin, B. Gondet, J. Griffes, Mineralogy of Terra Meridiani and western Arabia Terra from OMEGA/MEx and implications for their formation. Icarus 195(1), 106–130 (2008)

    Article  ADS  Google Scholar 

  • C. Quantin, P. Allemand, N. Mangold, C. Delacourt, Ages of Valles Marineris (Mars) landslides and implications for canyon history. Icarus 172(2), 555–572 (2004)

    Article  ADS  Google Scholar 

  • R. Rieder, T. Economou, H. Wanke, A. Turkevich, J. Crisp, J. Bruckner et al., The chemical composition of Martian soil and rocks returned by the mobile alpha proton x-ray spectrometer: preliminary results from the x-ray mode. Science 278, 1771–1774 (1997)

    Article  ADS  Google Scholar 

  • K. Righter, K. Pando, L.R. Danielson, Experimental evidence for sulfur-rich martian magmas: implications for volcanism and surficial sulfur sources. Earth Planet. Sci. Lett. 288, 235–243 (2009)

    Article  ADS  Google Scholar 

  • K. Righter, M.J. Drake, Core formation in Earth’s Moon, Mars, and Vesta. Icarus 124, 513–529 (1996)

    Article  ADS  Google Scholar 

  • K. Righter, M.J. Drake, E. Scott, Compositional relationships between meteorites and terrestrial planets, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween (University of Arizona Press, Tucson, 2006), pp. 803–828

    Google Scholar 

  • K. Righter, N.L. Chabot, Moderately and slightly siderophile element constraints on the depth and extent of melting in early Mars. Meteorit. Planet. Sci. 46, 157–176 (2011). doi:10.1111/j.1945-5100.2010.01140.x

    Article  ADS  Google Scholar 

  • K. Righter, M. Humayun, Volatile Siderophile Elements in Shergottites: Constraints on Core Formation and Magmatic Degassing. 43rd LPSC Program, abstract number 2465 (2012)

  • A. Rivoldini, T. Van Hoolst, O. Verhoeven, A. Mocquet, V. Dehant, Geodesy constraints on the interior structure and composition of Mars. Icarus 213(2), 451–472 (2011)

    Article  ADS  Google Scholar 

  • L.H. Roach, J.F. Mustard, M.D. Lane, J.L. Bishop, S.L. Murchie, Diagenetic haematite and sulfate assemblages in Valles Marineris. Icarus 207(2), 659–674 (2010a)

    Article  ADS  Google Scholar 

  • L.H. Roach, J.F. Mustard, G. Swayze, R.E. Milliken, J.L. Bishop, S.L. Murchie, K. Lichtenberg, Hydrated mineral stratigraphy of Ius Chasma, Valles Marineris. Icarus 206(1), 253–268 (2010b)

    Article  ADS  Google Scholar 

  • L. Rose-Weston, J.M. Brenan, Y. Fei, R.A. Secco, D.J. Frost, Effect of pressure, temperature, and oxygen fugacity on the metal-silicate partitioning of Te, Se, and S: implications for earth differentiation source. Geochim. Cosmochim. Acta 73, 4598–4615 (2009)

    Article  ADS  Google Scholar 

  • A.E. Saal, E.H. Hauri, C.H. Langmuir, M.R. Perfit, Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419, 451–455 (2002)

    Article  ADS  Google Scholar 

  • P. Schiffman, R. Zierenberg, N. Marks, J.L. Bishop, M.D. Dyar, Acid-fog deposition at Kilauea volcano: a possible mechanism for the formation of siliceous-sulfate rock coatings on Mars. Geology 34, 921–924 (2006)

    Article  ADS  Google Scholar 

  • E. Sefton-Nash, D.C. Catling, Hematitic concretions at Meridiani Planum, Mars: their growth timescale and possible relationship with iron sulfates. Earth Planet. Sci. Lett. 269, 365–375 (2008)

    ADS  Google Scholar 

  • M. Settle, Formation and deposition of volcanic sulfate aerosols on Mars. J. Geophys. Res. 84, 8343–8354 (1979)

    Article  ADS  Google Scholar 

  • P.F. Shi, S.K. Saxena, Thermodynamic modelling of the C-H-O-S fluid system. Am. Mineral. 77, 1038–1049 (1992)

    Google Scholar 

  • S.W. Squyres, A.H. Knoll, Sedimentary rocks at Meridiani Planum: origin, diagenesis, and implications for life on Mars. Earth Planet. Sci. Lett. 240(1), 1–10 (2005)

    Article  ADS  Google Scholar 

  • S.W. Squyres et al., The Spirit Rover’s Athena science investigation at Gusev crater, Mars. Science 305, 794–799 (2004)

    Article  ADS  Google Scholar 

  • S.W. Squyres, R.E. Arvidson, J.F. Bell, F. Calef, B.C. Clark, B.A. Cohen, L.A. Crumpler, P.A. de Souza, W.H. Farrand, R. Gellert, J. Grant, K.E. Herkenhoff, J.A. Hurowitz, J.R. Johnson, B.L. Jolliff, A.H. Knoll, R. Li, S.M. McLennan, D.W. Ming, D.W. Mittlefehldt, T.J. Parker, G. Paulsen, M.S. Rice, S.W. Ruff, C. Schröder, A.S. Yen, K. Zacny, Ancient impact and aqueous processes at Endeavour crater, Mars. Science 336, 570–576 (2012)

    Article  ADS  Google Scholar 

  • B.D. Stanley, M.M. Hirschmann, A.C. Withers, CO2 solubility in Martian basalts and Martian atmospheric evolution. Geochim. Cosmochim. Acta 75, 5987–6003 (2011)

    Article  ADS  Google Scholar 

  • A.J. Stewart, M.W. Schmidt, W. Van-Westrenen, C. Liebske, Mars: a new core-crystallization regime. Science 316, 1323–1325 (2007)

    Article  ADS  Google Scholar 

  • R.B. Symonds, W.I. Rose, G.J.S. Bluth, T.M. Gerlach, Volcanic-gas studies: methods, results, and applications, in Volatiles in Magmas, Reviews in Mineralogy, vol. 30, ed. by M.R. Carroll, J.R. Holloway, (1994), pp. 1–66

    Google Scholar 

  • K.L. Tanaka, J.A. Skinner, T.M. Hare, T. Joyal, A. Wenker, Resurfacing history of the northern plains of Mars based on geologic mapping of Mars Global Surveyor data. J. Geophys. Res. Planets 108(E4), 8043 (2003)

    Article  ADS  Google Scholar 

  • S.R. Taylor, S.M. McLennan, Planetary Crusts: Their Composition, Origin and Evolution (Cambridge University Press, Cambridge, 2009), 378 pp.

    Google Scholar 

  • E. Tertre, S. Castet, G. Berger, M. Loubet, E. Giffaut, Surface chemistry of kaolinite and na-montmorillonite at 25 and 60 °C: experimental study and modelling. Geochim. Cosmochim. Acta 70, 4579–4599 (2006)

    Article  ADS  Google Scholar 

  • B.J. Thomson, N.T. Bridges, R. Milliken, A. Baldridge, S.J. Hook, J.K. Crowley, G.M. Marion, C.R. de Souza, A.J. Brown, C.M. Weitz, Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data. Icarus 214, 413–432 (2011)

    Article  ADS  Google Scholar 

  • F. Tian, M.W. Claire, J.D. Haqq-Misra, M. Smith, D.C. Crisp, D. Catling, K. Zahnle, J.F. Kasting, Photochemical and climate consequences of sulfur outgassing on early Mars. Earth Planet. Sci. Lett. 295, 412–418 (2009). doi:10.1016/j.epsl.2010.04.016

    Article  ADS  Google Scholar 

  • J.N. Tosca, S.M. McLennan, B.C. Clark, J.P. Grotzinger, J.A. Hurowitz, A.H. Knoll, C. Schröder, S.W. Squyres, Geochemical modeling of evaporation processes on Mars: insight from the sedimentary record at Meridiani Planum. Earth Planet. Sci. Lett. 240, 122–148 (2005)

    Article  ADS  Google Scholar 

  • N.J. Tosca, S.M. McLennan, M.D. Dyar, E.C. Sklute, F.M. Michel, Fe oxidation processes at Meridiani Planum and implications for secondary Fe mineralogy on Mars. J. Geophys. Res. 113, E05005 (2008). doi:10.1029/2007JE003019

    Article  ADS  Google Scholar 

  • E. Tréguier et al., Overview of mars surface geochemical diversity through APXS data multidimensional analysis: first attempt at modelling rock alteration. J. Geophys. Res. 113, E12S34 (2008). doi:10.1029/2007JE003010

    Article  ADS  Google Scholar 

  • M. Wadhwa, Redox states of Mars’ upper mantle and crust from Eu anomalies in Shergottite pyroxenes. Science 291, 1527–1530 (2001). doi:10.1126/science.1057594

    Article  ADS  Google Scholar 

  • P.J. Wallace, Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140, 217–240 (2005)

    Article  ADS  Google Scholar 

  • A. Wang et al., Sulfate deposition in subsurface regolith in Gusev crater, Mars. J. Geophys. Res. Planets 111(E2), E02S17 (2006)

    Article  ADS  Google Scholar 

  • C. Wang, J. Hirama, T. Nagasaka, S. Ban-Ya, Phase equilibria of liquid Fe-S-C ternary. ISIJ Int. 11, 1292–1299 (1991)

    Article  Google Scholar 

  • H. Wänke, G. Dreibus, Chemistry and accretion history of Mars. Philos. Trans. R. Soc. Lond. A 359, 285–293 (1994)

    Article  Google Scholar 

  • C.M. Weitz, M.D. Lane, M. Staid, E.N. Dobrea, Gray hematite distribution and formation in Ophir and Candor chasmata. J. Geophys. Res. Planets 113, 30 (2008)

    Article  Google Scholar 

  • C.M. Weitz, R.E. Milliken, J.A. Grant, A.S. McEwen, R.M.E. Williams, J.L. Bishop, B.J. Thomson, Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris. Icarus 205(1), 73–102 (2010)

    Article  ADS  Google Scholar 

  • C.M. Weitz, J.L. Bishop, P. Thollot, N. Mangold, L.H. Roach, Diverse mineralogies in two troughs of Noctis Labyrinthus, Mars. Geology 39, 899–902 (2011)

    Article  Google Scholar 

  • L. Wendt, C. Gross, T. Kneissl, M. Sowe, J.P. Combe, L. LeDeit, P.C. McGuire, G. Neukum, Sulfates and iron oxides in Ophir Chasma, Mars, based on OMEGA and CRISM observations. Icarus 213(1), 86–103 (2011)

    Article  ADS  Google Scholar 

  • L. Wilson, J.W. Head, Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Rev. Geophys. 32, 221–264 (1994)

    Article  ADS  Google Scholar 

  • S.M. Wiseman, R.E. Arvidson, R.V. Morris, F. Poulet, J.C. Andrews-Hanna, J.L. Bishop, S.L. Murchie, F.P. Seelos, D. Des Marais, J.L. Griffes, Spectral and stratigraphic mapping of hydrated sulfate and phyllosilicate-bearing deposits in northern Sinus Meridiani, Mars. J. Geophys. Res. Planets 115, E00D18 (2010)

    Article  ADS  Google Scholar 

  • S.M. Wiseman et al., Phyllosilicate and sulfate-hematite deposits within Miyamoto crater in southern Sinus Meridiani, Mars. Geophys. Res. Lett. 35(19), L19204 (2008)

    Article  ADS  Google Scholar 

  • J.J. Wray, E.Z.N. Dobrea, R.E. Arvidson, S.M. Wiseman, S.W. Squyres, A.S. McEwen, J.F. Mustard, S.L. Murchie, Phyllosilicates and sulfates at Endeavour Crater, Meridiani Planum, Mars. Geophys. Res. Lett. 36, L21201 (2009)

    Article  ADS  Google Scholar 

  • J.J. Wray, R.E. Milliken, C.M. Dundas, G.A. Swayze, J.C. Andrews-Hanna, A.M. Baldridge, M. Chojnacki, J.L. Bishop, B.L. Ehlmann, S.L. Murchie, R.N. Clark, F.P. Seelos, L.L. Tornabene, S.W. Squyres, Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. J. Geophys. Res. Planets 116, E01001 (2011)

    Article  ADS  Google Scholar 

  • J.J. Wray, S.W. Squyres, L.H. Roach, J.L. Bishop, J.F. Mustard, E.Z.N. Dobrea, Identification of the Ca-sulfate bassanite in Mawrth Vallis, Mars. Icarus 209(2), 416–421 (2010)

    Article  ADS  Google Scholar 

  • J. Zipfel, P. Scherer, B. Spettel, G. Dreibus, L. Schultz, Petrology and chemistry of the new shergottite Dar al Gani 476. Meteorit. Planet. Sci. 35, 95–106 (2000)

    Article  ADS  Google Scholar 

  • M.Y. Zolotov, M.V. Mironenko, Timing of acid weathering on Mars: a kinetic-thermodynamic assessment. J. Geophys. Res. 112(E7), E07006 (2007). doi:10.1029/2006JE002882

    Article  Google Scholar 

  • M.Y. Zolotov, Martian Volcanic Gases: are they Terrestrial-like? Lunar and Planetary Science XXXIV, abstract number 1795 (2003)

Download references

Acknowledgements

F. Gaillard is supported by the ERC grant #279790. We acknowledge the editorial handling of Mike Toplis and the helpful reviews by K. Righter, M. Zolotov, and P. King.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Gaillard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaillard, F., Michalski, J., Berger, G. et al. Geochemical Reservoirs and Timing of Sulfur Cycling on Mars. Space Sci Rev 174, 251–300 (2013). https://doi.org/10.1007/s11214-012-9947-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-012-9947-4

Keywords

Navigation