Skip to main content
Log in

The Formation of Mars: Building Blocks and Accretion Time Scale

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

In this review paper I address the current knowledge of the formation of Mars, focusing on its primary constituents, its formation time scale and its small mass compared to Earth and Venus. I argue that the small mass of Mars requires the terrestrial planets to have formed from a narrow annulus of material, rather than a disc extending to Jupiter. The truncation of the outer edge of the disc was most likely the result of giant planet migration, which kept Mars’ mass small. From cosmochemical constraints it is argued that Mars formed in a couple of million years and is essentially a planetary embryo that never grew to a full-fledged planet. This is in agreement with the latest dynamical models. Most of Mars’ building blocks consists of material that formed in the 2 AU to 3 AU region, and is thus more water-rich than that accreted by Earth and Venus. The putative Mars could have consisted of 0.1 % to 0.2 % by mass of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • R.M. Canup, Dynamics of lunar formation. Annu. Rev. Astron. Astrophys. 42, 441–475 (2004)

    Article  ADS  Google Scholar 

  • J.E. Chambers, Making more terrestrial planets. Icarus 152, 205–224 (2001)

    Article  ADS  Google Scholar 

  • J.E. Chambers, A semi-analytic model for oligarchic growth. Icarus 180, 496–513 (2006)

    Article  ADS  Google Scholar 

  • J.E. Chambers, P. Cassen, The effects of nebula surface density profile and giant-planet eccentricities on planetary accretion in the inner solar system. Meteoritics and Planetary. Science 37, 1523–1540 (2002)

    Google Scholar 

  • J.N. Cuzzi, R.C. Hogan, K. Shariff, Toward planetesimals: dense chondrule clumps in the protoplanetary Nebula. Astrophys. J. 687, 1432–1447 (2008)

    Article  ADS  Google Scholar 

  • N. Dauphas, A. Pourmand, Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–492 (2011)

    Article  ADS  Google Scholar 

  • R. Greenberg, W.K. Hartmann, C.R. Chapman, J.F. Wacker, Planetesimals to planets—numerical simulation of collisional evolution. Icarus 35, 1–26 (1978)

    Article  ADS  Google Scholar 

  • P. Goldreich, S. Tremaine, Disk-satellite interactions. Astrophys. J. 241, 425–441 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  • N. Haghighipour, A.P. Boss, On gas drag-induced rapid migration of solids in a nonuniform solar nebula. Astrophys. J. 598, 1301–1311 (2003)

    Article  ADS  Google Scholar 

  • B.M.S. Hansen, Formation of the terrestrial planets from a narrow annulus. Astrophys. J. 703, 1131–1140 (2009)

    Article  ADS  Google Scholar 

  • S. Ida, J. Makino, Scattering of planetesimals by a protoplanet—slowing down of runaway growth. Icarus 106, 210 (1993)

    Article  ADS  Google Scholar 

  • S. Ida, D.N.C. Lin, Toward a deterministic model of planetary formation. IV. Effects of type I migration. Astrophys. J. 673, 487–501 (2008)

    Article  ADS  Google Scholar 

  • A. Johansen, J.S. Oishi, M.-M. Mac Low, H. Klahr, T. Henning, A. Youdin, Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007)

    Article  ADS  Google Scholar 

  • T. Kleine, M. Touboul, B. Bourdon, F. Nimmo, K. Mezger, H. Palme, S.B. Jacobsen, Q.-Z. Yin, A.N. Halliday, Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009)

    Article  ADS  Google Scholar 

  • E. Kokubo, S. Ida, Orbital evolution of protoplanets embedded in a swarm of planetesimals. Icarus 114, 247–257 (1995)

    Article  ADS  Google Scholar 

  • E. Kokubo, S. Ida, Oligarchic growth of protoplanets. Icarus 131, 171–178 (1998)

    Article  ADS  Google Scholar 

  • E. Kokubo, J. Kominami, S. Ida, Formation of terrestrial planets from protoplanets. I. Statistics of basic dynamical properties. Astrophys. J. 642, 1131–1139 (2006)

    Article  ADS  Google Scholar 

  • J. Kominami, S. Ida, The effect of tidal interaction with a gas disk on formation of terrestrial planets. Icarus 157, 43–56 (2002)

    Article  ADS  Google Scholar 

  • J. Kominami, S. Ida, Formation of terrestrial planets in a dissipating gas disk with Jupiter and Saturn. Icarus 167, 231–243 (2004)

    Article  ADS  Google Scholar 

  • K. Lodders, An oxygen isotope mixing model for the accretion and composition of rocky planets. Space Sci. Rev. 92, 341–354 (2000)

    Article  ADS  Google Scholar 

  • F. Masset, M. Snellgrove, Reversing type II migration: resonance trapping of a lighter giant protoplanet. Mon. Not. R. Astron. Soc. 320, L55–L59 (2001)

    Article  ADS  Google Scholar 

  • F.S. Masset, A. Morbidelli, A. Crida, J. Ferreira, Disk surface density transitions as protoplanet traps. Astrophys. J. 642, 478–487 (2006)

    Article  ADS  Google Scholar 

  • A. Morbidelli, J. Chambers, J.I. Lunine, J.M. Petit, F. Robert, G.B. Valsecchi, K.E. Cyr, Source regions and time scales for the delivery of water to Earth. Meteoritics and Planetary. Science 35, 1309–1320 (2000)

    Google Scholar 

  • A. Morbidelli, A. Crida, The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191, 158–171 (2007)

    Article  ADS  Google Scholar 

  • A. Morbidelli, K. Tsiganis, A. Crida, H.F. Levison, R. Gomes, Dynamics of the giant planets of the solar system in the gaseous protoplanetary disk and their relationship to the current orbital architecture. Astron. J. 134, 1790–1798 (2007)

    Article  ADS  Google Scholar 

  • A. Morbidelli, R. Brasser, R. Gomes, H.F. Levison, K. Tsiganis, Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. Astron. J. 140, 1391–1401 (2010)

    Article  ADS  Google Scholar 

  • A. Morbidelli, J.I. Lunine, D.P. O’Brien, S.N. Raymond, K.J. Walsh, Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012)

    Article  ADS  Google Scholar 

  • M. Murakami, K. Hirose, H. Yurimoto, S. Nakashima, N. Takafuji, Water in Earth’s lower mantle. Science 295, 1885–1887 (2002)

    Article  ADS  Google Scholar 

  • F. Nimmo, T. Kleine, How rapidly did Mars accrete? Uncertainties in the Hf W timing of core formation. Icarus 191, 497–504 (2007)

    Article  ADS  Google Scholar 

  • D.P. O’Brien, A. Morbidelli, H.F. Levison, Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006)

    Article  ADS  Google Scholar 

  • D.P. O’Brien, K.J. Walsh, A. Morbidelli, S.N. Raymond, A.M. Mandell, J.C. Bond, Early giant planet migration in the solar system: geochemical and cosmochemical implications for terrestrial planet formation. Bull. Am. Astron. Soc. 42, 948 (2010)

    ADS  Google Scholar 

  • J. Papaloizou, D.N.C. Lin, On the tidal interaction between protoplanets and the primordial solar nebula. I—Linear calculation of the role of angular momentum exchange. Astrophys. J. 285, 818–834 (1984)

    Article  ADS  Google Scholar 

  • R.O. Pepin, On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991)

    Article  ADS  Google Scholar 

  • P.N. Peplowski et al., Radioactive elements on Mercury’s surface from MESSENGER: implications for the planet’s formation and evolution. Science 333, 1850 (2011)

    Article  ADS  Google Scholar 

  • A. Pierens, R.P. Nelson, Constraints on resonant-trapping for two planets embedded in a protoplanetary disc. Astron. Astrophys. 482, 333–340 (2008)

    Article  ADS  MATH  Google Scholar 

  • S.N. Raymond, T. Quinn, J.I. Lunine, High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus 183, 265–282 (2006)

    Article  ADS  Google Scholar 

  • S.N. Raymond, D.P. O’Brien, A. Morbidelli, N.A. Kaib, Building the terrestrial planets: constrained accretion in the inner Solar System. Icarus 203, 644–662 (2009)

    Article  ADS  Google Scholar 

  • V.S. Safronov, E.V. Zvjagina, Relative sizes of the largest bodies during the accumulation of planets. Icarus 10, 109 (1969)

    Article  ADS  Google Scholar 

  • D.D. Sasselov, M. Lecar, On the snow line in dusty protoplanetary disks. Astrophys. J. 528, 995–998 (2000)

    Article  ADS  Google Scholar 

  • K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011)

    Article  ADS  Google Scholar 

  • S.J. Weidenschilling, J.N. Cuzzi, Formation of planetesimals in the solar nebula. Protostars Planets III, 1031–1060 (1993)

    ADS  Google Scholar 

  • G. Wurm, J. Blum, J.E. Colwell, NOTE: a new mechanism relevant to the formation of planetesimals in the solar nebula. Icarus 151, 318–321 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Germany’s Helmholtz Alliance for partially funding this research through their ‘Planetary Evolution and Life’ programme while still based in France. I thank Kevin Walsh and Alessandro Morbidelli for their input, David O’Brien and Tilman Spohn for constructive reviews, and Kevin Walsh and David O’Brien again for providing me with data from their numerical simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Brasser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brasser, R. The Formation of Mars: Building Blocks and Accretion Time Scale. Space Sci Rev 174, 11–25 (2013). https://doi.org/10.1007/s11214-012-9904-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-012-9904-2

Keywords

Navigation