Skip to main content
Log in

A Historical Review of the Geomagnetic Storm-Producing Plasma Flows from the Sun

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The concept of geomagnetic storm-producing solar plasma flows has evolved and advanced considerably over the last 100 years or so. This particular field of study began in an effort to understand geomagnetic disturbances and the aurora. The purpose of this paper is try to follow the ways in which early concepts evolved to later ones, not to review each concept in detail. It is fascinating to see a step-by-step buildup of these concepts, from the earliest idea of flow of solar electrons to coronal mass ejections (CMEs). The time line, though tentative, of the studies of geomagnetic storm-producing plasma flows is presented. The author hopes that this paper will serve young researchers in particular to consider how they plan to advance further this scientific field. There is still much uncertainty about geomagnetic storm-producing solar plasma flows. Some of the major questions are listed from the point of view of a geophysicist in the summary sections by grouping them in terms of the quiet-time solar wind, solar streams from corona holes and CMEs associated with solar flares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

References

  • S.-I. Akasofu, The neutral hydrogen flux in the solar plasma flow–I. Planet. Space Sci. 12, 905–913 (1964)

    ADS  Google Scholar 

  • S.-I. Akasofu, Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 28, 121 (1981)

    ADS  Google Scholar 

  • S.-I. Akasofu, A comprehensive review of solar-terrestrial relationships in terms of a chain of four dynamo-powered plasma acceleration processes. Planet. Space Sci. 31, 25 (1983)

    ADS  Google Scholar 

  • S.-I. Akasofu, New scheme provides a first step toward geomagnetic storm prediction. Eos 77, 225 (1996)

    ADS  Google Scholar 

  • S.-I. Akasofu, Exploring the Secrets of the Aurora, 2nd edn. (Springer, Berlin, 2007)

    Google Scholar 

  • S.-I. Akasofu, The choice of the concept of magnetic field lines or of electric current lines: Alfven medal lecture. Ann. Geophys. 29, 1215 (2011)

    ADS  Google Scholar 

  • S.-I. Akasofu, S. Chapman, The ring current geomagnetic disturbance, and the Van Allen radiation belts. J. Geophys. Res. 66, 1321 (1961)

    ADS  MATH  Google Scholar 

  • S.-I. Akasofu, S. Chapman, The development of the main phase of magnetic storms. J. Geophys. Res. 68, 125 (1963)

    ADS  Google Scholar 

  • S.-I. Akasofu, S. Chapman, Solar-Terrestrial Physics (Oxford Univ. Press, Oxford, 1972), pp. 901

    Google Scholar 

  • S.-I. Akasofu, D.N. Covey, Magnetic configuration of the heliosphere in interstellar space. Planet. Space Sci. 29, 313 (1981)

    ADS  Google Scholar 

  • S.-I. Akasofu, C.D. Fry, Heliospheric current sheet and its solar cycle variations. J. Geophys. Res. 91, 13679 (1986)

    ADS  Google Scholar 

  • S.-I. Akasofu, L.-H. Lee, Modeling of an interplanetary disturbance event tracked by the interplanetary scintillation method. Planet. Space Sci. 37, 73 (1989)

    ADS  Google Scholar 

  • S.-I. Akasofu, L.-H. Lee, Modeling of a series of interplanetary events in September, 1978. Planet. Space Sci. 38, 575 (1990)

    ADS  Google Scholar 

  • S.-I. Akasofu, S. Yoshida, The structure of the solar plasma flow generated by solar flares. Planet. Space Sci. 15, 39 (1967)

    ADS  Google Scholar 

  • H. Alfven, Cosmical Electrodynamics (Oxford Univ. Press, Oxford, 1950), pp. 237

    MATH  Google Scholar 

  • H. Alfven, Electric currents cosmic plasmas. Rev. Geophys. Space Phys. 15, 271 (1977)

    ADS  Google Scholar 

  • H. Alfven, Cosmic Plasma (Reidel, Dordrecht, 1981)

    Google Scholar 

  • H.W. Babcock, The solar magnetograph. Astrophys. J. 118, 387 (1953)

    ADS  Google Scholar 

  • H.W. Babcock, H.D. Babcock, The sun’s magnetic field, 1952–1954. Astrophys. J. 121, 349 (1955)

    ADS  Google Scholar 

  • M. Banaszkiewicz, W.I. Axford, J.F. McKenzie, Astron. Astrophys. 337, 940 (1998)

    ADS  Google Scholar 

  • J. Bartels, Terrestrial-magnetic activity and its relations to solar phenomena. Terr. Magn. Atmos. Electr. 37, 1 (1932)

    Google Scholar 

  • L. Biermann, Kometenscheite und solar korpskularhlung. Z. Astrophys. 29, 274 (1951)

    ADS  Google Scholar 

  • L. Biermann, Physical processes in comet tails and their relation to solar activity. Memoires de lat Societe Royale des Sciences de Liege Quatrrime Serie, Tome XIII, Fasc. I–II, 291 (1953)

  • D.E. Billings, W.O. Roberts, The origin of M-region geomagnetic storms. Astrophys. Nor., 9, 148–149 (1964)

    ADS  Google Scholar 

  • K. Birkeland, The Norwegian Auroral Polaris Expedition, 1902–1903 (H. Aschehoug, Christinia, 1908), pp. 801

    Google Scholar 

  • J.D. Bohlin, An observational definition of coronal holes, in Coronal Holes and High Speed Wind Streams, ed. by J.B. Zirker (Colorado Associated University Press, Boulder, 1977), pp. 27–69

    Google Scholar 

  • J.C. Brandt, D.M. Hunten, On ejection of neutral hydrogen from the Sun and the terrestrial consequences. Planet. Space Sci. 14, 95 (1966)

    ADS  Google Scholar 

  • L. Burlaga, Interplanetary Magneto Hydrodynamics (Oxford Univ. Press, Oxford, 1995)

    Google Scholar 

  • L. Burlaga, E. Sittler, F. Mariani, R. Schwenn, Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673–6684 (1981)

    ADS  Google Scholar 

  • L.J. Cahill, P.G. Amazeen, The boundary of the geomagnetic field. J. Geophys. Res. 68, 1835 (1963)

    ADS  Google Scholar 

  • R.C. Carrington, Description of a singular appearance seen in the Sun on September 1, 1859. Mon. Not. R. Astron. 20, 13–15 (1860)

    ADS  Google Scholar 

  • S. Chapman, An outline of a theory of magnetic storms. Proc. R. Soc. 97, 61 (1918)

    Google Scholar 

  • S. Chapman, Solar streams of corpuscles: their geometry, absorption of light and penetration. Mon. Not. R. Atron. 89, 456–470 (1929)

    ADS  MATH  Google Scholar 

  • S. Chapman, Note on the solar corona and the terrestrial ionosphere. Smithson. Contrib. Astrophys. 2, 1 (1957)

    ADS  Google Scholar 

  • S. Chapman, J. Bartels, Geomagnetism, vol. I (Oxford Univ. Press, Oxford, 1940)

    Google Scholar 

  • S. Chapman, V.C.A. Ferraro, A new theory of magnetic storms. Terr. Magn. Atmos. Electr. 36, 77 (1931)

    Google Scholar 

  • J. Chen, Prominence eruptions and geoeffective solar wind structure, in Magnetic Storms. Geophysical Monograph, vol. 98 (American Geophys. Union, Washington, 1997), pp. 45–58

    Google Scholar 

  • J. Chen, J. Krall, Acceleration of coronal mass ejections. J. Geophys. Res. 108, 1410 (2003) doi:10.1029/2003JA009849

    Google Scholar 

  • M.R. Collier et al., Observations of neutral atoms from the solar wind. J. Geophys. Res. 106, 24893 (2001)

    ADS  Google Scholar 

  • N. Crooker, A.A. Joselyn, J. Feynman (eds.), Coronal Mass Ejections, Geophysical Monograph Series, vol. 99 (American Geophysical Union, Washington, 2009). p. 299

    Google Scholar 

  • M. Dryer, Interplanetary shock waves: Recent developments. Space Sci. Rev. 17, 277 (1975)

    ADS  Google Scholar 

  • M. Dryer, Z. Smith, C.D. Fry, W. Sun, C.S. Deehr, S.-I. Akasofu, Real-time shock arrival predictions during the “Halloween 2003 epoch”. Space Weather (2004) doi:10.1029/2004SW000087

    Google Scholar 

  • J.W. Dungey, Cosmic Electrodynamics (Cambridge Univ. Press, Cambridge, 1958), p. 183

    MATH  Google Scholar 

  • J.W. Dungey, Inteplanetary magnetic field and the auroral zone. Phys. Rev. Lett. 6, 47 (1961)

    ADS  Google Scholar 

  • D.H. Fairfield, L.J. Cahill, J. Geophys. Res. 71, 155 (1966)

    ADS  Google Scholar 

  • C.D. Fry, M. Dryer, C.S. Deehr, W. Sun, S.-I. Akasofu, Z. Smit, Forecasting solar wind structure and shock arrival times using an ensemble of models. J. Geophys. Res. 108, 1070 (2003) doi:10.029/2002JA009474

    Google Scholar 

  • T. Gold, Discussion on shock waves and rarefied gas dynamics, in Gas Dynamics of Cosmic Clouds, July 6–11, 1953, Cambridge, England (North Holland, Amsterdam, 1955), p. 103

    Google Scholar 

  • T. Gold, Motions in the magnetosphere of the Earth. J. Geophys. Res. 64, 1219 (1959)

    ADS  Google Scholar 

  • J.T. Gosling, V. Pizzo, S.J. Bame, Anomalous low proton temperatures in the solar wind following interplanetary shock waves—evidence of magnetic bottles? J. Geophys. Res. 78, 2001 (1973)

    ADS  Google Scholar 

  • J.T. Gosling, J.R. Asbridge, S.J. Bame, W.C. Feldman, R.D. Zwickl, Observations of large fluxes of He+ in the solar wind following an interplanetary shock. J. Geophys. Res. 85, 3431 (1980)

    ADS  Google Scholar 

  • J.T. Gosling, D.N. Baker, S.J. Bame, D.Z. Zwickle, Bidirectional solar wind electron heat flux and hemispherically symmetric polar rain. J. Geophys. Res. 91, 11352 (1986)

    ADS  Google Scholar 

  • J.T. Gosling, D.J. McComas, J.L. Phillips, S.J. Bame, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res. 96, 7831 (1991)

    ADS  Google Scholar 

  • K. Hakamada, Long-term variations of the solar magnetic dipole. Inf. Sci. J. 17, 97 (2010) (in Japanese)

    Google Scholar 

  • K. Hakamada, S.-I. Akasofu, Simulation of three-dimensional solar wind disturbances and resulting geomagnetic storms. Space Sci. Rev. 31, 3 (1982)

    ADS  Google Scholar 

  • K. Harvey, F. Recely, Polar coronal holes during Cycles 22 and 23. Sol. Phys. 211, 31 (2002)

    ADS  Google Scholar 

  • A. Hewish, S.J. Tappin, G.R. Faggen, Origin of strong interplanetary shocks, Nature, 314 (1985)

  • J. Hirshberg, A. Alksne, D.S. Colburn, S.J. Bame, A.J. Hundhausen, Observations of a solar flare induced interplanetary shock and helium-enriched driver gas. J. Geophys. Res. 75, 1 (1970)

    ADS  Google Scholar 

  • J. Hirshberg, J.R. Asbridge, D.E. Robbins, The helium-enriched interplanetary plasma from proton flares of August/September, 1966. Sol. Phys. 18, 313 (1971)

    ADS  Google Scholar 

  • J. Hirshberg, S.J. Bame, D.E. Robbines, Solar flares and solar wind enrichments: July 1965–July 1967. Sol. Phys. 23, 467 (1972)

    ADS  Google Scholar 

  • D. Hovestadt, G. Gloeckler, H. Hofner, B. Klecker, F.M. Ipavich, C.Y. Fan, L.A. Fisk, J.J. O’Gallagher, M. Scholer, Singly charged energetic helium emitted in solar flares. Astrophys. J. 246, L81 (1981)

    ADS  Google Scholar 

  • R.A. Howard, D.J. Michels, N.R. Sheeley Jr., M.J. Koomen, The observation of a coronal transient directed at Earth. Astrophys. J. 263, L101 (1982)

    ADS  Google Scholar 

  • A.J. Hundhausen, Coronal Expansion and Solar Wind (Springer, New York, 1972), pp. 238

    Google Scholar 

  • A.J. Hundhausen, R.A. Gentry, Numerical simulation of flare-generated disturbances in the solar wind. J. Geophys. Res. 74, 2908 (1969)

    ADS  Google Scholar 

  • B.V. Jackson, Heliographic observations of solar disturbances and their potential role in the origin of geomagnetic storms, in Magnetic Storms. Geophysical Monograph, vol. 98 (American Geophys. Union, Washington, 1997), p. 59

    Google Scholar 

  • J.A. Joselyn, P.S. McIntosh, Disappearing solar filaments: a useful prediction of geomagnetic activity. J. Geophys. Res. 86, 4555 (1981)

    ADS  Google Scholar 

  • W.T. Kelvin, President’s address, 1892–93. Proc. R. Soc. 52, 299–310 (1892)

    Google Scholar 

  • A.S. Krieger, A.F. Timothy, E.C. Roelof, A coronal hole and its identification as the source of a high velocity solar wind stream. Sol. Phys. 29, 505 (1973)

    ADS  Google Scholar 

  • H. Kunow, N.U. Crooker, J.A. Linker, R. Schween, R. von Steiger (eds.), Coronal Mass Ejections (Springer, Berlin, 2006)

    Google Scholar 

  • Liepman, Gas Dynamics of Cosmic Clouds, July 6–11, 1953, Cambridge, England (North Holland, Amsterdam, 1955)

    Google Scholar 

  • F.A. Lindemann, Note on the theory of magnetic storms. Philos. Mag. 38, 669 (1919)

    Google Scholar 

  • N. Lugas, A. Vourlidas, I.I. Roussev, H. Morgan, Solar-terrestrial simulation in the STEREO era: the 24–25 January 2007 eruptions. Sol. Phys. 256, 269 (2009)

    ADS  Google Scholar 

  • P.K. Manoharan, Ooty interplanetary scintillation-remote-sensing observations and analysis of coronal mass ejections in the heliosphere, in Remote Sensing of the Inner Heliosphere, ed. by M.M. Bisi, A.R. Breen (Springer, Berlin, 2010)

    Google Scholar 

  • E.W. Maunder, Magnetic disturbances, 1882–1903, as recorded at the Royal Observatory, Greenwich, and their association with sunspots. Mon. Not. R. Astron. Soc. 65, 2 (1905)

    ADS  Google Scholar 

  • D.J. McComas, H.A. Elliott, N.A. Schwadron, J.T. Gosling, R.M. Skoug, B.E. Goldstein, Geophys. Res. Lett. 30, 24 (2003). doi:10.1029/2003GL017136

    Google Scholar 

  • S.M.P. McKenna-Lawlor, M. Dryer, M.D. Kartalev, Z. Smith, C.D. Fry, W. Sun, S.C. Deer, K. Keccskemety, K. Kudela, Near real-time predictions of the arrival at Earth of flare-related shocks during solar cycle 23. J. Geophys. Res. 111, A11103 (2006). doi:10.1029/2005JA011162

    ADS  Google Scholar 

  • T. Nagata, Characteristics of the solar flare effect (Sqa) on geomagnetic field at Huancayo (Peru) and at Kakioka (Japan). J. Geophys. Res. 57, 1 (1952)

    ADS  Google Scholar 

  • N.F. Ness, C.S. Scearce, J.B. Seek, Initial results of the Imp 1 magnetic field experiment. J. Geophys. Res. 69, 3571 (1964)

    ADS  Google Scholar 

  • M. Neugebauer, C.W. Snyder, Solar plasma experiment. Science 138, 1095 (1962)

    ADS  Google Scholar 

  • M.W. Neupert, V. Pizzo, Solar corornal holes as sources of recurrent geomagnetic disturbances. J. Geophys. Res. 79, 3701 (1974)

    ADS  Google Scholar 

  • H.W. Newton, Solar flares and magnetic storms. Mon. Not. R. Astro. Soc. 103, 244 (1943)

    ADS  Google Scholar 

  • D. Odstrcil, D.P. Riley, X.P. Zhao, Numerical simulation of the 12 May 1997 interplanetary CME event. J. Geophys. Res. 109, A02116 (2004). doi:10.1029/2003JA010135

    Google Scholar 

  • E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664 (1958)

    ADS  Google Scholar 

  • E.N. Parker, Sudden expansion of the corona following a large solar flare and the attendant magnetic field and cosmic ray effects. Astrophys. J. 133, 1014 (1961)

    ADS  Google Scholar 

  • J.C. Pecker, W.O. Roberts, Solar corpuscles responsible for geomagnetic disturbances. J. Geophys. Res. 60, 33 (1955)

    ADS  Google Scholar 

  • J. Roosen, The seasonal variation of geomagnetic disturbance amplitudes. Bull. Astr. Insts. Neth. 18, 295 (1966)

    ADS  Google Scholar 

  • I.I. Roussev, N. Lugas, I. Sokolov, New physical insight on the changes in magnetic topology during coronal mass ejections: case studies for the 2002 April 21 and August 24 events. Astrophys. J. 668, L87 (2007)

    ADS  Google Scholar 

  • T. Saito, S.-I. Akasofu, Is the Earth’s dipole actually inclined with respect to the rotation axis? Planet. Space Sci. 38, 1203 (1990)

    ADS  Google Scholar 

  • T. Saito, T. Oki, S.-I. Akasofu, C. Olmstead, The sunspot cycle variations of the neutral line on the source surface. J. Geophys. Res. 94, 5453 (1989)

    ADS  Google Scholar 

  • T. Saito, W. Sun, C.S. Deehr, S.-I. Akasofu, Transient equatorial magnetic flux loops on the Sun as a possible new source of geomagnetic storms. J. Geophys. Res. 112, A05102 (2007). doi:10.1029/2006JA011941

    Google Scholar 

  • K. Schatten, J.M. Wilcox, N.F. Ness, A model of interplanetary and coronal magnetic fields. Sol. Phys. 6, 442 (1969)

    ADS  Google Scholar 

  • M. Schultz, Interplanetary sector structure and the heliospheric equator. Astrophys. Space Sci. 24, 371 (1973)

    ADS  Google Scholar 

  • A. Schuster, Sun-spots and magnetic storms. Mon. Not. R. Astron. Soc. 65, 186 (1905)

    ADS  Google Scholar 

  • A. Schuster, On the origin of magnetic storms. Proc. R. Soc. Lond. 85, 44 (1911)

    ADS  Google Scholar 

  • R. Schwenn, Solar wind sources and their variations over the solar cycle, in Solar Dynamics and Its Effects on the Heliosphere and the Earth, ed. by D.N. Baker et al. (Springer, Berlin, 2007), pp. 51–76, pp. 372

    Google Scholar 

  • R.M. Skoug, S.J. Bames, W.C. Feldman, J.T. Gosling, D.J. McComas, J.T. Steinberg, R.L. Tokar, P. Reley, L.F. Burlaga, N.S. Ness, C.W. Smith, A prolonged He+ enhancement within a coronal mass ejection in the solar wind. Geophys. Res. Lett. 26, 161 (1999)

    ADS  Google Scholar 

  • Z. Smith, M. Dryer, S.M.P. McKenna-Lawlor, C.D. Fry, C.S. Deehr, W. Sun, Operational validation of HAFv2’s predictions of interplanetary shock arrivals at Earth: declining phase of solar cycle 23. J. Geophys. Res. 114, A05106 (2009). doi:10.1029/2008JA13836R

    Google Scholar 

  • C.P. Sonett, E.J. Smith, A.R. Smith, in Proceedings of the First International Space Sciences Symposium, ed. by H.K. Kallman Biji (North Holland, Amsterdam, 1960), p. 921.

    Google Scholar 

  • C. Stormer, The Polar Aurora (Oxford Univ. Press, New York, 1955), pp. 403

    Google Scholar 

  • W. Sun, C.S. Deehr, M. Dryer, Z.K. Smith, S.-I. Akasofu, Simulated solar mass ejection imager and “Solar Terrestrial Relations Observation-like” views of the solar wind following the solar flares of 27–29 May 2003. Space Weather 6, So3006 (2008). doi:10.1029/2006sSW000296

    Google Scholar 

  • L. Svalgaard, J.M. Wilcox, Long term evolution of solar sector structure. Sol. Phys. 41, 461 (1975)

    ADS  Google Scholar 

  • J.J. Thomson, G.P. Thomson, in Conduction of Electricity through Gases, I (Dover, New York, 1969), p. 30, pp. 491

    Google Scholar 

  • V.S. Titov, P. Demoulin, Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707 (1999)

    ADS  Google Scholar 

  • R. Tousey, The solar corona. Space Res. XIII 48, 714 (1973)

    ADS  Google Scholar 

  • C.-Y. Tu, C. Zhou, E. Marsch, L.-D. Xia, L. Zhao, J.-X. Wang, K. Wilhelm, Solar wind origin in coronal funnels. Science 308, 519 (2005)

    ADS  Google Scholar 

  • J.A. Van Allen, Radiation observations with satellite 1958. J. Geophys. Res. 64, 271 (1959)

    ADS  Google Scholar 

  • J.M. Wilcox, N.F. Ness, Quasi-stationary corotating structure in the interplanetary medium. J. Geophys. Res. 70, 5793–5805 (1965)

    ADS  Google Scholar 

  • S.T. Wu, S.M. Hans, M. Dryer, Two dimensional, time-dependent MHD description of interplanetary disturbances, 1. Simulation of high speed solar wind interactions. Planet. Space Sci. 27, 25 (1979)

    Google Scholar 

  • S.T. Wu, W.P. Guo, D.J. Michels, L.F. Burlaga, MHD description of the dynamical relationships between a flux rope, streamer, coronal mass ejection, and magnetic cloud: An analysis of the January 1997 Sun-Earth connection event. J. Geophys. Res. 104, 14789 (1999)

    ADS  Google Scholar 

  • J.B. Zirker (ed.), Coronal Holes and High Speed Wind Streams (Colorado Associated Univ. Press, Boulder, 1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syun-Ichi Akasofu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akasofu, SI. A Historical Review of the Geomagnetic Storm-Producing Plasma Flows from the Sun. Space Sci Rev 164, 85–132 (2011). https://doi.org/10.1007/s11214-011-9856-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-011-9856-y

Keywords

Navigation