Skip to main content
Log in

Midlatitude Sporadic E. A Typical Paradigm of Atmosphere-Ionosphere Coupling

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

This paper provides a comprehensive update on sporadic E layers that is placed in the context of atmosphere-ionosphere coupling, exemplified here by the fundamental windshear theory processes that govern sporadic E layer formation and variability. Some basics of windshear theory are provided first, followed by a summary of key experimental results, their interpretation and physical understanding. The emphasis is placed on the wind shear control of the diurnal and sub-diurnal variability and altitude descent of sporadic E layers and the key role behind these properties of the diurnal and semidiurnal tides. Furthermore, the paper summarizes recent observations that establish a role also for the planetary waves in sporadic E layer occurrence and long-term variability. The possible mechanisms behind this interaction are examined and evidence is presented which shows that planetary waves affect sporadic E layers indirectly though the amplitude modulation of tides at lower altitudes in the MLT region. Only a brief mention is made about gravity wave effects on sporadic E, which apparently exist but cannot be as crucial in layer forming as thought in the past. There is now enough evidence to suggest that mid- and low-latitude sporadic E is not as “sporadic” as the name implies but a regularly occurring ionospheric phenomenon. This may suggest that the sporadic E layer physics can be incorporated in large-scale atmosphere-ionosphere coupling models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • W.I. Axford, The formation and vertical movement of dense ionized layers in the ionosphere. J. Geophys. Res. 68, 769 (1963)

    Article  ADS  Google Scholar 

  • C. Arras, C. Jacobi, J. Wickert, Semidiurnal tidal signature in sporadic E occurrence rates derived from GPS radio occultation measurements at higher midlatitudes. Ann. Geophys. 27, 2555–2563 (2009)

    Article  ADS  Google Scholar 

  • R.L. Bishop, G.D. Earle, Metallic ion transport associated with midlatitude intermediate layer development. J. Geophys. Res. 108(A1), 1019 (2003)

    Article  Google Scholar 

  • G. Chimonas, W.I. Axford, Vertical movement of temperate zone sporadic E layer. J. Geophys. Res. 73, 111 (1968)

    Article  ADS  Google Scholar 

  • G. Chimonas, Enhancement of sporadic E by horizontal transport within the layer. J. Geophys. Res. 76, 4578 (1971)

    Article  ADS  Google Scholar 

  • N. Christakis, C. Haldoupis, Q. Zhou, C. Meek, Seasonal variability and descent of mid-latitude sporadic E layers at Arecibo. Ann. Geophys. 27, 923–931 (2009)

    Article  ADS  Google Scholar 

  • R.R. Clark, M.D. Burrage, S.J. Franke, A.H. Manson, C.E. Meek, N.J. Mitchel, H.G. Muller, Observations of 7-day planetary waves with MLT radars and UARS/HRDI instrument. J. Atmos. Sol.-Terr. Phys. 64, 1217 (2002)

    Article  ADS  Google Scholar 

  • F.T. Djuth, M.P. Sulzer, S.A. Gonzales, J.D. Mathews, J.H. Elder, A continuum of gravity waves in the Arecibo thermosphere. Geophys. Res. Lett. 31, L16801 (2004). doi:10.1029/2003GL019376

    Article  ADS  Google Scholar 

  • G.D. Earle, T.J. Kane, R.F. Pfaff, S.R. Bounds, Ion layer separation and equilibrium zonal winds in midlatitude sporadic E. Geophys. Res. Lett. 27(4), 461–464 (2000). doi:10.1029/1999GL900572

    Article  ADS  Google Scholar 

  • J.M. Forbes, Tidal and planetary waves, in The Upper Mesosphere and Lower Thermosphere, a Review of Experiment and Theory, ed. by R.M. Johnson, T.L. Killen (1994), p. 67

    Google Scholar 

  • J.M. Forbes, M.E. Hagan, S. Miyahara, F. Vial, A.H. Manson, C.E. Meek, Yu. Portnyagin, Quasi-16-day oscillation in the mesosphere and lower thermosphere. J. Geophys. Res. 100, 9149 (1995)

    Article  ADS  Google Scholar 

  • S. Fukao, M. Yamamoto, R.T. Tsunoda, H. Hayakawa, T. Mukai, The SEEK (Sporadic-E Experiment from Kyushu) campaign. Geophys. Res. Lett. 25, 1761–1764 (1998)

    Article  ADS  Google Scholar 

  • C. Haldoupis, D.T. Farley, K. Schlegel, Type 1 echoes from the midlatitude E region ionosphere. Ann. Geophys. 15, 908–917 (1997)

    ADS  Google Scholar 

  • C. Haldoupis, D. Pancheva, Planetary waves and midlatitude sporadic E layers: Strong experimental evidence for a close relationship. J. Geophys. Res. 107 (2002). doi:10.1029/2001JA000212

  • C. Haldoupis, D. Pancheva, N.J. Mitchell, A study of tidal and planetary wave periodicities present in midlatitude sporadic E layers. J. Geophys. Res. 109, A02302 (2004). doi:10.1029/2003JA010253

    Article  Google Scholar 

  • C. Haldoupis, C. Meek, N. Christakis, D. Pancheva, A. Bourdillon, Ionogram height-time intensity observations of descending sporadic E layers at mid-latitude. J. Atmos. Sol.-Terr. Phys. 68, 539 (2006)

    Article  ADS  Google Scholar 

  • C. Haldoupis, D. Pancheva, Terdiurnal tidelike variability in sporadic E layers. J. Geophys. Res. 111, A07303 (2006). doi:10.1029/2005JA011522

    Article  ADS  Google Scholar 

  • C. Haldoupis, D. Pancheva, W. Singer, C. Meek, J. MacDougall, An explanation for the seasonal dependence of midlatitude sporadic E layers. J. Geophys. Res. 112, A06315 (2007). doi:10.1029/2007JA012322

    Article  Google Scholar 

  • C. Haldoupis, A tutorial review on sporadic E layers, in Aeronomy of the Earth’s Atmosphere and Ionosphere. IAGA Special Sopron Book series, doi:10.1007/978-94-007-0326-1-29 (Springer, Berlin, 2011)

    Google Scholar 

  • R.M. Harper, Tidal winds in the 100- to 200-km region at Arecibo. J. Geophys. Res. 82, 3243 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  • J.R. Holton, An Introduction to Dynamic Meteorology (Academic Press, San Diego, 1982)

    Google Scholar 

  • G.G. Hussey, K. Schlegel, C. Haldoupis, Simultaneous 50-MHz coherent backscatter and digital ionosonde observations in the midlatitude E region. J. Geophys. Res. 103, 6991 (1998)

    Article  ADS  Google Scholar 

  • D.L. Hysell, M. Yamamoto, S. Fukao, Imaging radar observations and theory of type I and type II quasiperiodic echoes. J. Geophys. Res. 107, 1360 (2002)

    Article  Google Scholar 

  • M.F. Larsen, A shear instability seeding mechanism for quasiperiodic echoes. J. Geophys. Res. 105, 24931 (2000)

    Article  ADS  Google Scholar 

  • M.C. Kelley, The Earth’s Ionosphere: Plasma Physics and Electrodynamics, 2nd edn. (Academic Press, San Diego, 2009)

    Google Scholar 

  • D.J. Livneh, I. Seker, F.T. Djuth, J.D. Mathews, Continuous quasiperiodic thermospheric waves over Arecibo. J. Geophys. Res. 112, A07313 (2007). doi:10.1029/2006JA012225

    Article  Google Scholar 

  • J.W. MacDougall, 110 km neutral zonal wind patterns. Planet. Space Sci. 22, 545 (1974)

    Article  ADS  Google Scholar 

  • J.W. MacDougall, J.M. Plane, P.T. Jayachandran, Polar cap Sporadic E: part 2, modeling. J. Atmos. Sol.-Terr. Phys. 62, 1169–1176 (2000)

    Article  ADS  Google Scholar 

  • J.D. Mathews, F.S. Bekeny, Upper atmosphere tides and the vertical motion of ionospheric sporadic layers at Arecibo. J. Geophys. Res. 84, 2743–2750 (1979)

    Article  ADS  Google Scholar 

  • J.D. Mathews, M.P. Sulzer, P. Perillat, Aspects of layer electrodynamics from high-resolution ISR observations of the 80–270 km ionosphere. Geophys. Res. Lett. 24(11), 1411–1414 (1997)

    Article  ADS  Google Scholar 

  • J.D. Mathews, Sporadic E: current views and recent progress. J. Atmos. Sol.-Terr. Phys. 60, 413 (1998)

    Article  ADS  Google Scholar 

  • C.K. Meyer, J.M. Forbes, A 6.5-day westward propagating planetary wave: Origin and characteristics. J. Geophys. Res. 102, 26173 (1997)

    Article  ADS  Google Scholar 

  • K.L. Miller, L.G. Smith, Incoherent scatter radar observations of irregular structure in mid-latitude sporadic E layers. J. Geophys. Res. 83, 3761–3775 (1978)

    Article  ADS  Google Scholar 

  • D. Pancheva, Evidence for non-linear coupling of planetary waves and tides in the lower thermosphere over Bulgaria. J. Atmos. Sol.-Terr. Phys. 62, 115 (2000)

    Article  ADS  Google Scholar 

  • D. Pancheva, C. Haldoupis, C.E. Meek, A.H. Manson, N.J. Mitchell, Evidence of a role for modulated atmospheric tides in the dependence of sporadic E on planetary waves, J. Geophys. Res. 108 (2003). doi:10.1029/2002JA009788

  • R.F. Pfaff, M. Yamamoto, P. Marioni, H. Mori, S. Fukao, Electric field measurements above and within a sporadic-E layer. Geophys. Res. Lett. 25, 1769–1772 (1998)

    Article  ADS  Google Scholar 

  • S. Shalimov, C. Haldoupis, M. Voiculescu, K. Schlegel, Midlatitude E region plasma accumulation driven by planetary wave horizontal wind shears. J. Geophys. Res. 104, 28207 (1999)

    Article  ADS  Google Scholar 

  • S. Shalimov, C. Haldoupis, A model of midlatitude E region plasma convergence inside a planetary wave cyclonic vortex. Ann. Geophys. 20, 1193 (2002)

    Article  ADS  Google Scholar 

  • L.G. Smith, A sequence of rocket observations of nighttime sporadic E. J. Atmos. Sol.-Terr. Phys. 32, 1427 (1970)

    Google Scholar 

  • E.P. Szuszczewicz, R.G. Roble, P.J. Wilkinson, R. Hanbaba, Coupling mechanisms in the lower ionospheric-thermospheric system and manifestations in the formation and dynamics of intermediate descending layers. J. Atmos. Sol.-Terr. Phys. 57, 1483 (1995)

    Article  ADS  Google Scholar 

  • H. Teitelbaum, F. Vial, On the tidal variability induced by non-linear interaction with planetary waves. J. Geophys. Res. 96, 14169 (1991)

    Article  ADS  Google Scholar 

  • R. Tsunoda, M. Yamamoto, K. Igarashi, K. Hocke, S. Fukao, Quasiperiodic radar echoes from midlatitude sporadic E and role of the 5-day planetary wave. Geophys. Res. Lett. 25, 951 (1998)

    Article  ADS  Google Scholar 

  • M. Voiculescu, C. Haldoupis, K. Schlegel, Evidence for planetary wave effects on midlatitude backscatter and sporadic E layer occurrence. Geophys. Res. Lett. 26, 1105 (1999)

    Article  ADS  Google Scholar 

  • M. Voiculescu, C. Haldoupis, D. Pancheva, M. Ignat, K. Schlegel, S. Shalimov, More evidence for a planetary wave link with midlatitude E region coherent backscatter and sporadic E layers. Ann. Geophys. 18, 1182 (2000)

    Article  ADS  Google Scholar 

  • J.D. Whitehead, Recent work on midlatitude and equatorial sporadic E. J. Atmos. Sol.-Terr. Phys. 51, 401 (1989)

    Article  ADS  Google Scholar 

  • J.D. Whitehead, The formation of the sporadic E layer in the temperate zones. J. Atmos. Sol.-Terr. Phys. 20, 49 (1961)

    Article  Google Scholar 

  • P.J. Wilkinson, E.P. Szuszczewicz, R.G. Roble, Measurements and modelling of intermediate, descending, and sporadic layers in the lower ionosphere: Results and implications for global-scale ionospheric-thermospheric studies. Geophys. Res. Lett. 19, 95 (1992)

    Article  ADS  Google Scholar 

  • X.M. Zuo, W.X. Wan, Planetary wave oscillations in sporadic E layer occurrence at Wuhan. Earth Planets Space 60, 647–652 (2008)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Haldoupis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haldoupis, C. Midlatitude Sporadic E. A Typical Paradigm of Atmosphere-Ionosphere Coupling. Space Sci Rev 168, 441–461 (2012). https://doi.org/10.1007/s11214-011-9786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-011-9786-8

Keywords

Navigation