Skip to main content

Advertisement

Log in

Ceres: Its Origin, Evolution and Structure and Dawn’s Potential Contribution

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Ceres appears likely to be differentiated and to have experienced planetary evolution processes. This conclusion is based on current geophysical observations and thermodynamic modeling of Ceres’ evolution. This makes Ceres similar to a small planet, and in fact it is thought to represent a class of objects from which the inner planets formed. Verification of Ceres’ state and understanding of the many steps in achieving it remains a major goal. The Dawn spacecraft and its instrument package are on a mission to observe Ceres from orbit. Observations and potential results are suggested here, based on number of science questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.F. A’Hearn, P.D. Feldman, Water vaporization on Ceres. Icarus 98, 54–60 (1992)

    Article  ADS  Google Scholar 

  • B.G. Bills, F. Nimmo, Forced obliquities and moments of inertia of Ceres and Vesta. Icarus (2011, in press). doi:10.1016/j.icarus.2010.09.002

    Google Scholar 

  • H. Campins, K. Hargrove, N. Pinilla-Alonso, E.S. Howell, M.S. Kelley, J. Licandro, T. Mothé-Diniz, Y. Fernández, J. Ziffer, Water ice and organics on the surface of the asteroid 24 Themis. Nature 464, 1320–1321 (2010). doi:10.1038/nature09029

    Article  ADS  Google Scholar 

  • R. Canup, Origin of the terrestrial planets and the Earth-Moon system. Phys. Today 56 (2004)

  • B. Carry et al., Near-infrared mapping and physical properties of the dwarf-planet Ceres. Astron. Astrophys. 478, 235–244 (2008)

    Article  ADS  Google Scholar 

  • J.C. Castillo-Rogez, P.G. Conrad, Habitability potential of Ceres, a warm icy body in the Asteroid Belt, in Astrobiology Science Conference 2010: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond. Abstract #5302, 2010

  • J.C. Castillo-Rogez, J.I. Lunine, Evolution of Titan’s rocky core constrained by Cassini observations. Geophys. Res. Lett. 37, L20205 (2010). doi:10.1029/2010GL044398

    Article  ADS  Google Scholar 

  • J.C. Castillo-Rogez, T.B. McCord, Ceres’ evolution and present state constrained by shape data. Icarus 205, 443–459 (2010). doi:10.1016/j.icarus.2009.04.008

    Article  ADS  Google Scholar 

  • J.C. Castillo-Rogez, B. Schmidt, Geophysical evolution of the Themis family parent body. Geophys. Res. Lett. 37, L10202 (2010). doi:10.1029/2009GL042353

    Article  ADS  Google Scholar 

  • M.A. Chamberlain, M.V. Sykes, G.A. Esquerdo, Ceres lightcurve analysis—Period determination. Icarus 188, 451–456 (2007)

    Article  ADS  Google Scholar 

  • B.A. Cohen, R.F. Coker, Modeling of liquid water on CM meteorite parent bodies and implications for amino acid racemization. Icarus 145, 369–381 (2000). doi:10.1006/icar.1999.63299

    Article  ADS  Google Scholar 

  • P. Descamps, F. Marchis, T. Michalowski, J. Berthier, J. Pollock, P. Wiggins, M. Birlan, F. Colas, F. Vachier, S. Fauvaud, M. Fauvaud, J.-P. Sareyan, F. Pilcher, D.A. Klinglesmith, A giant crater on 90 Antiope? Icarus 203, 102–111 (2009). doi:10.1016/j.icarus.2009.04.022

    Article  ADS  Google Scholar 

  • S.J. Desch, J.C. Cook, T.C. Dogget, S.B. Porter, Thermal evolution of Kuiper belt objects, with implications for cryovolcanism. Icarus 202, 694–714 (2009). doi:10.1016/j.icarus.2009.03.009

    Article  ADS  Google Scholar 

  • F.P. Fanale, J.R. Salvail, The water regime of asteroid (1) Ceres. Icarus 82, 97–110 (1989)

    Article  ADS  Google Scholar 

  • R.E. Grimm, H.Y. McSween, Water and the thermal evolution of carbonaceous chondrite parent bodies. Icarus 82, 244–280 (1989)

    Article  ADS  Google Scholar 

  • A.R. Hildebrand, T.D. Jones, L.A. Lebofsky, Is Ceres differentiated? Meteoritics 22, 410 (1987)

    ADS  Google Scholar 

  • T.V. Johnson, P.R. Estrada, Origin of the Saturn system, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Berlin, 2009)

    Google Scholar 

  • T.V.V. King, R.N. Clark, W.M. Calvin, D.M. Sherman, R.H. Brown, Evidence for ammonium-bearing minerals on Ceres. Science 255, 1551–1553 (1992)

    Article  ADS  Google Scholar 

  • G.A. Krasinsky, E.V. Pitjeva, M.V. Vasilyev, E.I. Yagudina, Hidden mass in the Asteroid Belt. Icarus 158, 98–105 (2002). doi:10.1006/icar.2002.6837

    Article  ADS  Google Scholar 

  • L.A. Lebofsky, M.V. Sykes, E.F. Tedesco, G.J. Veeder, D.L. Matson, R.H. Brown, J.C. Gradie, M.A. Feierberg, R.J. Rudy, A refined ‘standard’ thermal model for asteroids based on observations of 1 Ceres and 2 Pallas. Icarus 68, 239–251 (1986). doi:10.1016/0019-1035(86)90021-7

    Article  ADS  Google Scholar 

  • H.F. Levison, W.F. Bottke, M. Gounelle, A. Morbidelli, D. Nesvorný, K. Tsiganis, Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature 460, 364–366 (2009)

    Article  ADS  Google Scholar 

  • J.-Y. Li, L.A. McFadden, J.Wm. Parker, E.F. Young, S.A. Stern, P.C. Thomas, C.T. Russell, M.V. Sykes, Photometric analysis of 1 Ceres and surface mapping from HST observations. Icarus 182, 143–160 (2006)

    Article  ADS  Google Scholar 

  • J.I. Lunine, Origin of water ice in the Solar system, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween Jr. (Univ. of Arizona, Tucson, 2006), pp. 309–319

    Google Scholar 

  • T.B. McCord, C. Sotin, Ceres: Evolution and current state. J. Geophys. Res. 110, E05009 (2005)

    Article  Google Scholar 

  • T.B. McCord, L.A. McFadden, C.T. Russell, C. Sotin, P.C. Thomas, Ceres, Vesta, and Pallas: Protoplanets, not Asteroids. Eos Trans. AGU 87, 105–109 (2006). doi:10.1029/2006E0100002

    Article  ADS  Google Scholar 

  • T.B. McCord, L.A. Taylor, J.-Ph. Combe, G. Kramer, C.M. Pieters, J.M. Sunshine, R.N. Clark, Sources and physical processes responsible for OH/H2O in the Lunar soil discovered by the Moon Mineralogy Mapper (M3). J. Geophys. Res. (2011, in press)

  • W.B. McKinnon, Could Ceres be a refugee from the Kuiper Belt? in Asteroids Comets Meteors 2008, LPI Contrib. 1405, Paper 8389, 2008

  • R.E. Milliken, A.S. Rivkin, Brucite and carbonate assemblages from altered olivine-rich materials on Ceres. Nat. Geosci. 2, 258–261 (2009). doi:10.1038/ngeo478

    Article  ADS  Google Scholar 

  • A. Morbidelli, H.F. Levison, K. Tsiganis, R. Gomes, Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005). doi:10.1038/nature03540

    Article  ADS  Google Scholar 

  • O. Mousis, Y. Alibert, On the composition of ices incorporated in Ceres. Mon. Not. R. Astron. Soc. 358, 188–192 (2005). doi:10.1111/j.1365-2966.2005.08777.x

    Article  ADS  Google Scholar 

  • O. Mousis, Y. Alibert, D. Hestroffer, U. Marboeuf, C. Dumas, B. Carry, J. Horner, F. Selsis, Origin of volatiles in the main belt. Mon. Not. R. Astron. Soc. 383, 1269–1280 (2008). doi:10.1111/j.1365-2966.2007.12653.x

    Article  ADS  Google Scholar 

  • D.P. O’Brien, K.J. Walsh, A. Morbidelli, S.N. Raymond, A.M. Mandell, J.C. Bond, Early giant planet migration in the solar system: geochemical and cosmochemical implications for terrestrial planet formation. Bull. Am. Astron. Soc. 42, 948 (2010)

    ADS  Google Scholar 

  • J.-P. Perrillat, I. Daniel, K.T. Koga, B. Reynard, H. Cardon, W. A. Crichton, Kinetics of antigorite dehydration: A real-time X-ray diffraction study. Earth Planet. Sci. Lett. 236, 899–913 (2005). doi:10.1016/j.epsl.2005.06.006

    Article  ADS  Google Scholar 

  • C.M. Pieters, J.N. Goswami, R.N. Clark, M. Annadurai, J. Boardman, B. Buratti, J.-P. Combe, M.D. Dyar, R. Green, J.W. Head, C. Hibbitts, M. Hicks, P. Isaacson, R. Klima, G. Kramer, S. Kumar, E. Livo, S. Lundeen, E. Malaret, T. McCord, J. Mustard, J. Nettles, N. Petro, M.C. Runyon, M. Staid, J. Sunshine, L.A. Taylor, S. Tomplins, P. Varanasi, Character and spatial distribution of OH/H2O on the surface of the moon seen M3 on Chandrayaan-1. Science 326, 568–572 (2009)

    Article  ADS  Google Scholar 

  • E. Pitjeva, The dynamic estimation of the mass of the main asteroid belt, in Highlights of Astronomy, vol. 13, ed. by O. Engvold. Presented at the XXVth General Assembly of the IAU—2003, Sydney, Australia, 13–26 July 2003 (Astronomical Society of the Pacific, San Francisco, 2005), pp. 772–773. ISBN 1-58381-086-2

    Google Scholar 

  • E.V. Pitjeva, E.M. Standish, Proposals for the masses of the three largest asteroids, the Moon-Earth mass ratio and the astronomical unit. Celest. Mech. Dyn. Astron. 103, 365–372 (2009)

    Article  MATH  ADS  Google Scholar 

  • A.S. Rivkin, J.P. Emery, Detection of ice and organics on an asteroidal surface. Nature 464, 1322–1323 (2010). doi:10.1038/nature09028

    Article  ADS  Google Scholar 

  • A.S. Rivkin, et al. The case for Ceres: Report to the Planetary Science Decadal Survey Committee, 2009

  • A.S. Rivkin et al., Space Sci. Rev. (2011, this issue)

  • P. Rousselot et al., A search for escaping water from Ceres’ poles, in Asteroids Comets Meteors 2008, LPI Contrib. 1405, Paper 8337, 2008

  • B.E. Schmidt, P.C. Thomas, J.M. Bauer, J.-Y. Li, L.A. McFadden, M.J. Mutchler, S.C. Radcliffe, A.S. Rivkin, C.T. Russell, J.Wm. Parker, S.A. Stern, The shape and surface variation of 2 Pallas from the Hubble Space Telescope. Science 326, 275–279 (2009). doi:10.1126/science.1177734

    Article  ADS  Google Scholar 

  • R. Shapiro, D. Schulze-Makuch, The search for alien life in our Solar System: Strategies and priorities. Astrobiology 9, 335–343 (2008)

    Article  ADS  Google Scholar 

  • C. Thomas, J.Wm. Parker, L.A. McFadden, C.T. Russell, S.A. Stern, M.V. Sykes, E.F. Young, Differentiation of the asteroid Ceres as revealed by its shape. Nature 437, 224–226 (2005). doi:10.1038/nature03938

    Article  ADS  Google Scholar 

  • D. Turrini, G. Magni, A. Coradini, Probing the history of Solar system through the cratering records on Vesta and Ceres (2009). arXiv:0902.3579v1

  • J.H. Waite, W.S. Lewis, B. Magee, J.I. Lunine, W.B. McKinnon, C.R. Glein, O. Mousis, D.T. Young, T. Brockwell, J. Westlake, M.-J. Nguyen, B. Teolis, H. Niemann, W. Kasprzak, R. McNutt, M. Perry, W.-H. Ip, Ammonia, radiogenic Ar, organics, and deuterium measured in the plume of Saturn’s icy moon Enceladus. Nature 460, 487–490 (2009). doi:10.1038/nature08153

    Article  ADS  Google Scholar 

  • K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A. Mandell, Origin of the Asteroid Belt and Mars’ small mass. Bull. Am. Astron. Soc. 42, 947 (2010)

    ADS  Google Scholar 

  • L. Wilson, K. Keil, L.B. Browning, A.N. Krot, W. Bourcier, Early aqueous alteration, explosive disruption, and re-processing of asteroids. Meteorit. Planet. Sci. 34, 541–557 (1999)

    Article  ADS  Google Scholar 

  • M.Y. Zolotov, On the composition and differentiation of Ceres. Icarus (2009). doi:10.1016/j.icarus.2009.06.011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas B. McCord.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCord, T.B., Castillo-Rogez, J. & Rivkin, A. Ceres: Its Origin, Evolution and Structure and Dawn’s Potential Contribution. Space Sci Rev 163, 63–76 (2011). https://doi.org/10.1007/s11214-010-9729-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-010-9729-9

Keywords

Navigation