Skip to main content
Log in

An Overview of Ionosphere—Thermosphere Models Available for Space Weather Purposes

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Our objective is to review recent advances in ionospheric and thermospheric modeling that aim at supporting space weather services. The emphasis is placed on achievements of European research groups involved in the COST Action 724. Ionospheric and thermospheric modeling on time scales ranging from a few minutes to several days is fundamental for predicting space weather effects on the Earth’s ionosphere and thermosphere. Space weather affects telecommunications, navigation and positioning systems, radars, and technology in space. We start with an overview of the physical effects of space weather on the upper atmosphere and on systems operating at this regime. Recent research on drivers and development of proxies applied to support space weather modeling efforts are presented, with emphasis on solar radiation indices, solar wind drivers and ionospheric indices. The models are discussed in groups corresponding to the physical effects they are dealing with, i.e. bottomside ionospheric effects, trans-ionospheric effects, neutral density and scale height variations, and spectacular space weather effects such as auroral emissions. Another group of models dealing with global circulation are presented here to demonstrate 3D modeling of the space environment. Where possible we present results concerning comparison of the models’ performance belonging to the same group. Finally we give an overview of European systems providing products for the specification and forecasting of space weather effects on the upper atmosphere, which have implemented operational versions of several ionospheric and thermospheric models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. Aarons, Global morphology of ionospheric scintillations. Proc. IEEE 70(4), 360–378 (1982)

    ADS  Google Scholar 

  • E.L. Afraimovich, O.N. Boitman, E.I. Zhovty, A.D. Kalikhman, T.G. Pirog, Dynamics and anisotropy of traveling ionospheric disturbances as deduced from transionospheric sounding data. Radio Sci. 34(2), 477–486 (1999)

    ADS  Google Scholar 

  • S.I. Akasofu, Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 28, 121–190 (1981)

    ADS  Google Scholar 

  • D.N. Anderson, M.J. Buonsanto, M. Codrescu, D. Decker, C.G. Fesen, T.J. Fuller-Rowell, B.W. Reinisch, P.G. Richards, R.G. Roble, R.W. Schunk, J.J. Sojka, Intercomparison of physical models and observations of the ionosphere. J. Geophys. Res. 103, 2179–2192 (1998)

    ADS  Google Scholar 

  • E.A. Araujo-Pradere, T.J. Fuller-Rowell, STORM: An empirical storm-time ionospheric correction model, 2, Validation, Radio Sci. 37 (2002)

  • E.A. Araujo-Pradere, T.J. Fuller-Rowell, Validation of STORM response in IRI2000. J. Geophys. Res. 108(A3), 1120 (2003). doi:10.1029/2002JA009720

    Google Scholar 

  • E.A. Araujo-Pradere, T.J. Fuller-Rowell, M.V. Coderscu, STORM: An empirical storm-time ionospheric correction model, 1, Model description, Radio Sci. 37 (2002). doi:10.1029/2001RS002467

  • A.D. Aylward, G.J. Milward, A. Lotinga, A. Dobbin, M.J. Harris, Recent advances in modeling space weather effects on the terrestrial upper and middle atmospheres. COST Action 724 Final Report, 319-326, ed. OPOCE, European Commission, 2007

  • J.R. Austen, S.J. Franke, C.H. Liu, Ionospheric imaging using computerized tomography. Radio Sci. 23, 299–307 (1988)

    ADS  Google Scholar 

  • P.M. Banks, G. Kockarts, Aeronomy (Academic Press, San Diego, 1973)

    Google Scholar 

  • A. Belehaki, L. Kersley, Statistical validation of a technique for estimating total electron content from bottomside ionospheric profiles. Radio Sci. 41, RS5003 (2006). doi:10.1029/2005RS003433

    ADS  Google Scholar 

  • A. Belehaki, I. Tsagouri, On the occurrence of storm-induced nighttime ionization enhancements at ionospheric middle latitudes, J. Geophys. Res. 107 (2002)

  • A. Belehaki, N. Jakowski, B. Reinisch, Comparison of ionospheric ionization measurements over Athens using ground ionosonde and GPS derived TEC values. Radio Sci. 38(6), 1105 (2003). doi:10.1029/2003RS002868

    ADS  Google Scholar 

  • A. Belehaki, P. Marinov, I. Kutiev, N. Jakowski, S. Stankov, Comparison of the topside ionosphere scale height determined by topside sounders model and bottomside Digisonde profiles. Adv. Space Res. 37(5), 963–966 (2006a)

    ADS  Google Scholar 

  • A. Belehaki, Lj. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, M. Hatzopoulos, Monitoring and forecasting the ionosphere over Europe: The DIAS project. Space Weather 4, S12002 (2006b). doi:10.1029/2006SW000270

    ADS  Google Scholar 

  • A. Belehaki, Lj. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, M. Hatzopoulos, Ionospheric specification and forecasting based on observations from European ionosondes participating in DIAS project. Acta Geophys. 55(3), 398–409 (2007). doi:10.2478/s11600-007-0010-x

    ADS  Google Scholar 

  • A. Belehaki, J. Watermann, J. Lilensten, A. Glover, M. Hapgood, M. Messerotti, R. van der Linden, H. Lundstedt, COST Action ES0803: Development of space weather products and services in Europe. Space Weather (2008, in press)

  • D. Bilitza, Solar-terrestrial models and application software. Planet Space Sci. 40, 541 (1992)

    ADS  Google Scholar 

  • D. Bilitza, International reference ionosphere 2000. Radio Sci. 36(2), 261–276 (2001)

    ADS  Google Scholar 

  • P.A. Bradley, Indices of ionospheric response to solar-cycle epoch. Adv. Space Res. 13, (3)25–(3)28 (1993)

    ADS  Google Scholar 

  • P.A. Bradley, PRIME (Prediction Regional Ionospheric Modelling over Europe), COST Action 238 Final Report, Commission of the European Communities, Brussels, 1995

  • P.A. Bradley, G. Juchnikowski, H. Rothkaehl, I. Stanislawska, Instantaneous maps of the European middle and high-latitude ionosphere for HF propagation assessments. Adv. Space Res. 22(6), 861–864 (1998)

    ADS  Google Scholar 

  • J. Bremer, The influence of the IMF structure on the ionospheric F-region. J. Atmos. Terr. Phys. 50(9), 831–838 (1988)

    ADS  Google Scholar 

  • S. Bruinsma, G. Thuillier, F. Barlier, The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and properties. J. Atmos. Sol.-Terr. Phys. 65, 1053–1070 (2003)

    ADS  Google Scholar 

  • M.J. Buonsanto, Ionospheric storms—a review. Space Sci. Rev. 88, 563 (1999)

    ADS  Google Scholar 

  • D. Buresova, J. Lastovicka, G. De Franceschi, Manifestation of strong geomagnetic storms in the ionosphere above Europe, in Space Weather Research Towards Applications in Europe, ed. by J. Lilensten. Astrophysics and Space Science Library, vol. 344 (2007), pp. 185–202

  • Lj.R. Cander, Toward forecasting and mapping ionospheric space weather under the COST actions. Adv. Space Res. 31(4), 957–964 (2003)

    ADS  Google Scholar 

  • Lj.R. Cander, Ionospheric research and space weather services. J. Atmos. Sol.-Terr. Phys. (2008). doi:10.1016/jastp.2008.05.010

    Google Scholar 

  • G. Crowley, J. Schoendorf, G. Roble, F.A. Marcos, Cellular structures in the high-latitude thermosphere. J. Geophys. Res. 101, 211–224 (1996)

    ADS  Google Scholar 

  • R.E. Daniell Jr., L.D. Brown, D.N. Anderson, M.W. Fox, P.H. Doherty, D.T. Decker, J.J. Sojka, R.W. Schunk, Parameterized ionospheric model: A global ionospheric parameterization based on first principle models. Radio Sci. 30(5), 1499–1510 (1995)

    ADS  Google Scholar 

  • Y. Deng, A.D. Richmond, A.J. Ridley, H.-L. Liu, Assessment of the non-hydrostatic effect on the upper atmosphere using a general circulation model (GCM). Geophys. Res. Lett. 35, L01104 (2008). doi:10.1029/2007GL032182

    Google Scholar 

  • R.F. Donnelly, D.F. Heath, J.L. Lean, G.J. Rottman, Differences in the temporal variations of solar UV flux, 10.7-cm solar radio flux, sunspot number, and Ca-K plage data caused by solar rotation and active region evolution. J. Geophys. Res. 88, 9883–9888 (1983)

    ADS  Google Scholar 

  • R.F. Donnelly, T.P. Repoff, J.W. Harvey, D.F. Heath, Temporal characteristics of the solar UV flux and He I line at 1083 nm. J. Geophys. Res. 90, 6267–6273 (1986)

    ADS  Google Scholar 

  • T. Dudok de Wit, J. Aboudarham, P.-O. Amblard, F. Auchère, J. Lilensten, M. Kretzschmar, Which solar EUV proxies are best for reconstructing the solar EUV irradiance? Adv. Spac. Res. 42(4), 903–911 (2008)

    ADS  Google Scholar 

  • G. Earle, M.C. Kelley, Spectral studies of the sources of ionospheric electric fields. J. Geophys. Res. 92, 213 (1987)

    ADS  Google Scholar 

  • D.T. Farley, Incoherent scatter radar probing, in Modern Ionospheric Science, ed. by H. Kohl, R. Ruster, K. Schlegel (Eur. Geophys. Soc., Katlenhurg-Lindau, 1996), pp. 415–439

    Google Scholar 

  • L. Floyd, J. Newmark, J. Cook, L. Herring, D. McMullin, Solar EUV and UV spectral irradiances and solar indices. J. Atmos. Sol.-Terr. Phys. 67, 3–15 (2005)

    ADS  Google Scholar 

  • C.A. Franklin, M.A. Maclean, The design of swept-frequency topside Sounders. Proc. IEEE 57, 897–929 (1969)

    Google Scholar 

  • T.J. Fuller-Rowell, D. Rees, A three-dimensional time dependent global model of the thermosphere. J. Atmos. Sci. 27(11), 2545–2567 (1980)

    ADS  Google Scholar 

  • T.J. Fuller-Rowell, M.V. Codrescu, E. Araujo-Pradere, Capturing the Storm-Time F-Region Ionospheric Response in an Empirical Model. AGU Geophysical Monograph, vol. 125 (2001), pp. 393–402

  • D.L. Gallagher, P.D. Craven, R.H. Comfort, An empirical model of the earth’s plasmasphere. Adv. Space Res. 8(8), 15–24 (1988)

    ADS  Google Scholar 

  • W.D. Gonzalez, A.L.C. Gonzalez, Energy transfer by magnetopause reconnection and the substorm parameter ε. Planet. Space Sci. 32, 1007–1012 (1984)

    ADS  Google Scholar 

  • W.D. Gonzalez, F.S. Mozer, A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field. J. Geophys. Res. 79, 41864194 (1974)

    ADS  Google Scholar 

  • W.D. Gonzalez, B.T. Tsurutani, Criteria of interplanetary parameters causing intense magnetic storms (Dst<−100 nT). Planet. Space Sci. 35, 1101 (1987)

    ADS  Google Scholar 

  • W.D. Gonzalez, B.T. Tsurutani, A.L. Gonzalez, Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88, 529–562 (1999)

    ADS  Google Scholar 

  • C.A. Gonzales, M.C. Kelley, B.G. Fejer, J.F. Vickrey, R.F. Woodman, Equatorial electric fields during magnetically disturbed conditions. 2. Implications of simultaneous auroral and equatorial measurements. J. Geophys. Res. 84, 5803 (1979)

    ADS  Google Scholar 

  • R.A. Greenwald, The role of coherent radars in ionospheric and magnetospheric research, in Modern Ionospheric Science, ed. by H. Kohl, R. Ruster, K. Schlegel, Eur. Geophys. Soc. (Katlenburg-Lindau, 1996), pp. 391–414

  • P. Guio, J. Lilensten, Effect of suprathermal electrons on the intensity and Doppler frequency of electron plasma lines. Ann. Geophys. 17, 903–912 (1999)

    ADS  Google Scholar 

  • T.L. Gulyaeva, I. Stanislawska, Derivation of a planetary ionospheric storm index. Ann. Geophys. (2008, accepted)

  • L.A. Hajkowicz, Types of ionospheric scintillations in southern mid-latitudes during the last sunspot maximum. J. Atmos. Sol.-Terr. Phys. 56(3), 391–399 (1994)

    ADS  Google Scholar 

  • R. Hanbaba, Improved quality of service in ionospheric telecommunication systems planning and operation. COST Action 251 Final Report, Space Research Centre, Warsaw, 1999, pp. 102–103

  • M.J. Harris, N.F. Arnold, A.D. Aylward, A study into the Effect of the Diurnal Tide on the structure of the background mesosphere and thermosphere using the new Coupled Middle Atmosphere and Thermosphere (CMAT) General Circulation Model. Ann. Geophys. 20, 225–235 (2002)

    ADS  Google Scholar 

  • J.W. Harvey, W.C. Livingston, Variability of the solar 10830 He I triplet, in IAU Symposium 154: Infrared Solar Physics, ed. by D.M. Rabin, J.T. Je_eries, C. Lindsey (Kluwer, Dordrecht, 1994), pp. 59–64

    Google Scholar 

  • B.M. Heath, D.F. Schlesinger, The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance. J. Geophys. Res. 91, 8672–8682 (1986)

    ADS  Google Scholar 

  • A.E. Hedin, Correlations between thermospheric density and temperature, solar EUV flux, and 10.7-cm flux variations. J. Geophys. Res. 89, 9828–9834 (1984)

    ADS  Google Scholar 

  • A.E. Hedin, MSIS-86 thermospheric model. J. Geophys. Res. 92, 4649–4662 (1987)

    ADS  Google Scholar 

  • A.E. Hedin, Extension of the MSIS thermospheric model into the middle and lower atmosphere. J. Geophys. Res. 96, 1159 (1991)

    ADS  Google Scholar 

  • A.E. Hedin , Revised global model of thermosphere winds using satellite and ground-based observations. J. Geophys. Res. 96, 7657–7688 (1991)

    ADS  Google Scholar 

  • A.E. Hedin, E.L. Fleming, A.H. Manson, F.J. Schmidlin, S.K. Avery, R.R. Clark, S.J. Franke, G.J. Fraser, T. Tsuda, F. Vial, R.A. Vincent, Empirical wind model for the upper, middle and lower atmosphere. J. Atmos. Terr. Phys. 58, 1421–1447 (1996)

    ADS  Google Scholar 

  • G. Hochegger, B. Nava, S.M. Radicella, R. Leitinger, A family of ionospheric models for different uses. Phys. Chem. Earth 25(4), 307–310 (2000)

    Google Scholar 

  • K. Hocke, K. Schlegel, A review of atmospheric gravity waves and traveling ionospheric disturbances. Ann. Geophys. 14, 917–940 (1996)

    ADS  Google Scholar 

  • Z. Houminer, J.A. Bennett, P.L. Dyson, Real-time ionospheric model updating. IE Aust. IREE Aust. 13(2), 99–104 (1993)

    Google Scholar 

  • ITU-R, ‘HF Propagation Prediction method’, Recommendation ITU-R, International Telecommunication Union, Geneva, 1994, p. 533

  • N. Jakowski, S.M. Stankov, D. Klaehn, Operational space weather service for GNSS precise positioning. Ann. Geophys. 23, 3071–3079 (2005a)

    ADS  Google Scholar 

  • N. Jakowski, K. Tsybulya, S.M. Stankov, A. Wehrenpfennig, About the potential of GPS radio occultation measurements for exploring the ionosphere, in Earth Observations with CHAMP—Results from Three Years in Orbit, ed. by C. Reigber, H. Luehr, P. Schwintzer, J. Wickert (Springer, Berlin, 2005b), pp. 441–446

    Google Scholar 

  • N. Jakowski, N. Stankov, S.M. Schuster, S. Klein, On developing a new ionospheric perturbation index for space weather operations. Adv. Space Res. 28, 11 (2006)

    Google Scholar 

  • J.R. Kan, L.C. Lee, S.-I. Akasofu, The energy coupling function and the power generated by the solar wind-magnetosphere dynamics. Planet, Space Sci. 28, 823 (1980)

    ADS  Google Scholar 

  • A.T. Karpachev, G.F. Deminova, S.A. Pulinets, Ionospheric changes in response to IMF variations. J. Atmos. Terr. Phys. 57(12), 1415–1432 (1995)

    ADS  Google Scholar 

  • M.C. Kelley, B.C. Fejer, C.A. Gonzales, An explanation for anomalous ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys. Res. Lett. 6, 301 (1979)

    ADS  Google Scholar 

  • K. Koutroumbas, A. Belehaki, One-step ahead prediction of foF2 using time series forecasting techniques. Ann. Geophys. 23, 3035–3042 (2005)

    Article  ADS  Google Scholar 

  • K. Koutroumbas, I. Tsagouri, A. Belehaki, Time series autoregression technique implemented on-line in DIAS system for ionospheric forecast over Europe. Ann. Geophys. (2008)

  • I. Kutiev, P. Marinov, Topside sounder model of scale height and transition height characteristics of the ionosphere. Adv. Space Res. 39, 759–766 (2007). doi:10.1016/j.asr.2006.06.013

    ADS  Google Scholar 

  • I. Kutiev, P. Marinov, S. Watanabe, Model of topside ionosphere scale height based on topside sounder data. Adv. Space Res. 37(5), 943–950 (2006)

    ADS  Google Scholar 

  • I. Kutiev, P. Marinov, A. Belehaki, B. Reinisch, N. Jakowski, Reconstruction of the topside density profile by using the topside sounder model profiler and digisonde data. Adv. Space Res. (2009). doi:10.1016/j.asr.2008.08.017

    Google Scholar 

  • J. Lastovicka, Monitoring and forecasting of ionospheric space weather-effects of geomagnetic storms. J. Atmos. Sol.-Terr. Phys. 64, 697–705 (2002)

    ADS  Google Scholar 

  • J. Lastovicka, R.A. Akmaev, G. Beig, J. Bremer, J.T. Emmert, Global change in the upper atmosphere. Science 314(5803), 1253 (2006)

    Google Scholar 

  • C. Lathuillère, W.A. Gault, B. Lamballais, Y.J. Rochon, B.H. Solheim, Doppler temperatures from O1D airglow in the daytime thermosphere as observed by the Wind Imaging Interferometer (WINDII) on the UARS satellite. Ann. Geophys. 20, 203–212 (2002)

    ADS  Google Scholar 

  • J.L. Lean, O.R. White, W.C. Livingston, R.F. Donnelly, A. Skumanich, A three-component model of the variability of the solar ultraviolet flux: 145-200 nm. J. Geophys. Res. 87, 10307–10317 (1982)

    ADS  Google Scholar 

  • R. Leitinger, Ionospheric electron content, in The Upper Atmosphere-Data Analysis and Interpretation, ed. by W. Dieminger, G.K. Hartmann, R. Leitinger (Springer, New York, 1996), pp. 660–672

    Google Scholar 

  • R. Leitinger, S. Radicella, B. Nova, Electron density models for assessments studies – new developments. Acta Geodetica Hung. 37(2–3), 183–193 (2002)

    Google Scholar 

  • M.F. Levy, M.I. Dick, P. Spalla, C. Scotto, I. Kutiev, P. Muhtarov, Results of COST 251 testing of mappings and models, COST251TD(98)021, September 1998

  • J. Lilensten, P.L. Blelly, The TEC and F2 parameters as tracers of the ionosphere and thermosphere. J. Atmos. Sol.-Terr. Phys. 64, 775–793 (2002)

    ADS  Google Scholar 

  • C.H. Lin, A.D. Richmond, R.A. Heelis, G.J. Bailey, G. Lu, J.Y. Liu, H.C. Yeh, S.-Y. Su, Theoretical study of the low- and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: Relative importance of the neutral wind and the electric field. J. Geophys. Res. 110(14), A12312 (2005). doi:10.1029/2005JA011304

    ADS  Google Scholar 

  • D. Lummerzheim, J. Lilensten, Electron transport and energy degradation in the ionosphere: evaluation of the numerical solution, comparison with laboratory experiments and auroral observations. Ann. Geophys. 12, 1039–1051 (1994)

    ADS  Google Scholar 

  • P. Marinov, I. Kutiev, S. Watanabe, Empirical model of O+–H+ transition height based on topside sounder data. Adv. Space Res. 34(9), 2021–2025 (2004)

    ADS  Google Scholar 

  • L.A. McKinnell, A.W.V. Poole, Ionospheric variability and electron density profile studies with neural networks. Adv. Space Res. 27(1), 83–90 (2001)

    ADS  Google Scholar 

  • A.V. Mikhailov, Ionospheric Index MF2n for monthly median foF2 modeling and long-term prediction over European area. Phys. Chem. Earth (C) 24(4), 329–332 (1999)

    Google Scholar 

  • A.V. Mikhailov, V.V. Mikhailov, A new ionospheric index MF2. Adv. Space Res. 25(4), 93–97 (1995)

    ADS  Google Scholar 

  • A.V. Mikhailov, V.H. Depuev, A.H. Depueva, Short-term foF2 forecast: Present day state of art, in Space Weather: Research Towards Applications in Europe. Astrophysics and Space Science Library, vol. 344, (2007), pp. 169–184

  • G. Millward, R.J. Moffett, S. Quegan, T.J. Fuller-Rowell, A coupled thermosphere-ionosphere-plasmasphere model (CTIP), in Solar Terrestrial Energy Program (STEP) Handbook, ed. by R.W. Schunk (1996)

  • G. Millward, A. Richmond, N. Maruyama, A. Maute, A new model of the Earth’s ionosphere and plasmasphere, center for integrated space weather modeling. web publication (2005). web.bu.edu/cism/Publications/posters/Millward_CISM_SV2005_14.pdf

  • P. Muhtarov, I. Kutiev, Autocorrelation method for temporal interpolation and short-term prediction of ionospheric data. Radio Sci. 34(2), 459–464 (1999)

    ADS  Google Scholar 

  • P. Muhtarov, I. Kutiev, L. Cander, Geomagnetically correlated autoregression model for short-term prediction of ionospheric parameters. Inverse Probl. 18, 49–65 (2002)

    MATH  ADS  Google Scholar 

  • A.C. Nicholas, J.M. Picone, S.E. Thonnard, R.R. Meier, K.F. Dymond, D.P. Drob, A methodology for using optimal MSIS parameters retrieved from SSULI data to compute satellite drag on LEO objects. J. Atmos. Sol.-Terr. Phys. 1317–1326 (2000)

  • A. Nishida, Geomagnetic Dp2 fluctuations and associated magnetospheric phenomena. J. Geophys. Res. 73, 1795 (1968)

    ADS  Google Scholar 

  • D.J. Pawlowski, A.J. Ridley, Modeling the thermospheric response to solar flares. J. Geophys. Res. 113, A10309 (2008). doi:10.1029/2008JA013182

    ADS  Google Scholar 

  • P. Perrault, S.-I. Akasofu, A study of geomagnetic storms. Geophys. J. R. Astr. Soc. 54, 547 (1978)

    ADS  Google Scholar 

  • R.F. Pfaff, In-situ measurement techniques for ionospheric research, in Modern Ionospheric Science, ed. by H. Kohl, R. Ruster, K. Schlegel (Eur. Geophys. Soc., Katlenburg-Lindau, 1996), pp. 459–551

    Google Scholar 

  • R.A. Phinney, D.L. Anderson, On the radio occultation method for studying planetary atmospheres. J. Geophys. Res. 73(5), 1819–1827 (1968)

    ADS  Google Scholar 

  • X. Pi, Ch. Wang, G. Rosen, G. Hajj, B. Wilson, Y. Sahai, E.R. de Paula, M.A. Abdu, Forecasting Equatorial Spread-F Using a Global Assimilative Ionospheric Model: EGS-AGU-EUG 2003, Nice, France, April 06–11, 2003

  • J.M. Picone, A.E. Hedin, D.P. Drob, A.C. Aikin, NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. (Space Phys.) 107(A12), SIA 15-1. doi:10.1029/2002JA009430

  • G.W. Prölss, Ionospheric F-region storms, in Handbook of Atmospheric Electrodynamics, vol. II (CRC, Boca Raton, 1995), pp. 195–248

    Google Scholar 

  • G.W. Prölss, Space weather effects in the upper atmosphere: Low and middle latitudes. Lect. Notes Phys. 656, 193–214 (2005)

    Google Scholar 

  • S.M. Radicella, R. Leitinger, The evolution of the DGR approach to model electron density profiles. Adv. Space Res. 27(1), 35–40 (2001)

    ADS  Google Scholar 

  • B.W. Reinisch, Modern ionosondes, in Modern Ionospheric Science, ed. by H. Kohl, R. Rüster, K. Schlegel (Eur. Geophys. Soc., Katlenburg-Lindau, 1996), pp. 410–458

    Google Scholar 

  • B.W. Reinisch, X. Huang, Deducing topside profiles and total electron content from bottomside ionograms. Adv. Space Res. 27, 23–30 (2001)

    ADS  Google Scholar 

  • B.W. Reinisch, D.M. Haines, R.F. Benson, J.L. Green, G.S. Sales, W.W.L. Taylor, Radio sounding in space: Magnetosphere and topside ionosphere. J. Atmos. Sol.-Terr. Phys. 63, 87–98 (2001)

    ADS  Google Scholar 

  • A.D. Richmond, E.C. Ridley, R.G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 19, 601–604 (1992)

    ADS  Google Scholar 

  • A.J. Ridley, Y. Deng, G. Toth, The global ionosphere-thermosphere model. J. Atmos. Sol.-Terr. Phys. 68, 839–864 (2006)

    ADS  Google Scholar 

  • R.G. Roble, E.C. Ridley, A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): Equinox solar cycle minimum simulations (30–500 km). Geophys. Res. Lett. 21(6), 417–420 (1994)

    ADS  Google Scholar 

  • L. Scherliess, B.G. Fejer, Satellite studies of mid- and low-latitude ionospheric disturbance zonal plasma drifts. Geophys. Res. Lett. 25(9), 1503 (1998)

    ADS  Google Scholar 

  • R.W. Schunk, L. Scherliess, J.J. Sojka, Recent approaches to modeling ionospheric weather. Adv. Space Res. 31(4), 819–828 (2003)

    ADS  Google Scholar 

  • R.W. Schunk, L. Scherliess, J.J. Sojka, D.C. Thompson, D.N. Anderson, M. Codresc, C. Minter, T.J. Fuller-Rowell, R.A. Heelis, M. Hairston, B.M. Howe, Global Assimilation of Ionospheric Measurements (GAIM). Radio Sci. 39(1–11), RS1S02 (2004). doi:10.1029/2002RS002794

    Google Scholar 

  • J.J. Sojka, C. Donald, D.C. Thompson, R.W. Schunk, J.V. Eccles, J.J. Makela, M.C. Kelley, S.A. González, N. Aponte, T.W. Bullett, Ionospheric data assimilation: recovery of strong mid-latitudinal density gradients. J. Atmos. Sol.-Terr. Phys. 65(10), 1087–1097 (2003)

    ADS  Google Scholar 

  • S.C. Solomon, Auroral particle transport using Monte Carlo and hybrid methods. J. Geophys. Res. 106(A1), 107–116 (2001)

    ADS  Google Scholar 

  • I.M. Stanislawska, G. Prölss, Correlation between the energy supplied by reconnection and the magnetospheric energy consumption. Planet. Space Sci. 33, 1091–1093 (1985)

    ADS  Google Scholar 

  • I. Stanislawska, G. Juchnikowski, R. Hanbaba, H. Rothkaehl, G. Sole, Z. Zbyszynski, COST251 Recommended instantaneous mapping model of ionosphere characteristics—PLES. Phys. Chem. Earth (C) 25(4), 291–294 (2000)

    Google Scholar 

  • I. Stanisławska, G. Juchnikowski, Z. Zbyszyński, Generation of instantaneous maps of ionospheric characteristics. Radio Sci. 36(5), 1073–1081 (2001)

    ADS  Google Scholar 

  • I. Stanislawska, Z. Zbyszynski, Forecasting of the ionospheric quiet and disturbed foF2 values at a single location. Radio Sci. 36(5), 1065–1071 (2001)

    ADS  Google Scholar 

  • I. Stanislawska, Z. Zbyszynski, Forecasting of the ionospheric characteristics during quiet and disturbed conditions. Ann. Geophys. 45(1), 169–175 (2002)

    Google Scholar 

  • I. Stanislawska, H. Rothkaehl, D. Bureshova, Limited-area electron concentration height profile instantaneous maps. Adv. Space Res. 33(6), 874–877 (2004a)

    ADS  Google Scholar 

  • I. Stanislawska, D. Bureshova, H. Rothkaehl, Stormy ionosphere mapping over Europe. Adv. Space Res. 33(6), 917–919 (2004b)

    ADS  Google Scholar 

  • S.M. Stankov, P. Marinov, I. Kutiev, Comparison of NeQuick, PIM, and TSM model results for the topside ionospheric plasma scale and transition heights. Adv. Space Res. 39, 767–773 (2007)

    ADS  Google Scholar 

  • R.J. Thompson, D.G. Cole, G. Patterson, P.J. Wilkinson, Space weather services in Australia, Proceedings of the ESA Workshop on Space Weather, 11–13 November 1998, ESTEC, The Netherlands. http://esa-spaceweather.net/spweather/workshops/proceedings_w1/POSTER4/thompson8.pdf

  • G. Thuillier, S. Bruinsma, The Mg II index for upper atmosphere modelling. Ann. Geophys. 19, 219–228 (2001)

    Article  ADS  Google Scholar 

  • I. Tsagouri, A. Belehaki, A new empirical model of middle latitude ionospheric response for space weather applications. Adv. Space Res. 37, 420–425 (2006)

    ADS  Google Scholar 

  • I. Tsagouri, A. Belehaki, An upgrade of the solar wind driven empirical model for the middle latitude ionospheric storm time response. J. Atmos. Sol.-Terr. Phys. 70(16), 2061–2076 (2008)

    Google Scholar 

  • I. Tsagouri, A. Belehaki, G. Moraitis, H. Mavromihalaki, Positive and negative ionospheric disturbances at middle latitudes during geomagnetic storms. Geophys. Res. Lett. 27(21), 3579–3582 (2000)

    ADS  Google Scholar 

  • B.T. Tsurutani, W.D. Gonzalez, The future of geomagnetic storm predictions: implications from recent solar and interplanetary observations. J. Atmos. Sol.-Terr. Phys. 57, 1369 (1995)

    ADS  Google Scholar 

  • Y. Tulunay, E. Tulunay, E.T. Senalp, The neural network technique – 1: A general exposition. Adv. Space Res. 33, 983–987 (2004a)

    ADS  Google Scholar 

  • Y. Tulunay, E. Tulunay, E.T. Senalp, The neural network technique – 2: An ionospheric example illustrating its application. Adv. Space Res. 33, 988–992 (2004b)

    ADS  Google Scholar 

  • R. Viereck, L.C. Puga, D. McMullin, D. Judge, M. Weber, W.K. Tobiska, The Mg II index: a proxy for solar EUV. Geophys. Res. Lett. 28, 1343–1346 (2001)

    ADS  Google Scholar 

  • M. Watanabe, N. Sato, R.A. Greenwald, M. Pinnock, M.R. Hairston, R.L. Raiden, D.J. McEwen, The ionospheric response to interplanetary magnetic field variations: Evidence for rapid global change and the role of preconditioning in the magnetosphere. J. Geophys. Res. 105, 22955 (2000)

    ADS  Google Scholar 

  • P. Wintoft, L.R. Cander, Twenty-four hour predictions of foF2 using time delay neural networks. Radio Sci. 35(2), 395–408 (2000a)

    ADS  Google Scholar 

  • P. Wintoft, L. Cander, Ionospheric foF2 storm forecasting using neural networks. Phys. Chem. Earth 25(4), 267–273 (2000b)

    Google Scholar 

  • O. Witasse, J. Lilensten, C. Lathuillere, P.L. Blelly, Modeling the OI 630.0 and 557.7 nm thermospheric dayglow during EISCAT-WINDII coordinated measurements. J. Geophys. Res. 104, 24639–24655 (1999)

    ADS  Google Scholar 

  • B. Zolesi, Lj.R. Cander, COST271 Action “Effects of the upper atmosphere on terrestrial and Earth-space communications”. Final report. Ann. Geophys. 47(2/3), (2004)

  • B. Zolesi, Lj.R. Cander, G. De Franceschi, Simplified ionospheric regional model for telecommunication applications. Radio Sci. 28(4), 603–612 (1993)

    ADS  Google Scholar 

  • B. Zolesi, Lj.R. Cander, G. De Franceschi, On the potential applicability of the simplified ionospheric regional model to different midlatitude areas. Radio Sci. 31(3), 547–552 (1996)

    ADS  Google Scholar 

  • B. Zolesi, A. Belehaki, I. Tsagouri, Lj.R. Cander, Real-time updating of the simplified ionospheric regional model for operational applications. Radio Sci. 39, RS2011 (2004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Belehaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belehaki, A., Stanislawska, I. & Lilensten, J. An Overview of Ionosphere—Thermosphere Models Available for Space Weather Purposes. Space Sci Rev 147, 271–313 (2009). https://doi.org/10.1007/s11214-009-9510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-009-9510-0

Keywords

Navigation