Skip to main content
Log in

Alfvén Waves and Their Roles in the Dynamics of the Earth’s Magnetotail: A Review

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Earth’s magnetotail is an extremely complex system which—energized by the solar wind—displays many phenomena, and Alfvén waves are essential to its dynamics. While Alfvén waves were first predicted in the early 1940’s and ample observations were later made with rockets and low-altitude satellites, observational evidence of Alfvén waves in different regions of the extended magnetotail has been sparse until the beginning of the new millennium. Here I provide a phenomenological overview of Alfvén waves in the magnetotail organized by region—plasmasphere, central plasma sheet, plasma sheet boundary layer, tail lobes, and reconnection region—with an emphasis on spacecraft observations reported in the new millennium that have advanced our understanding concerning the roles of Alfvén waves in the dynamics of the magnetotail. A brief discussion of the coupling of magnetotail Alfvén waves and the low-altitude auroral zone is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.H. Acuna et al., Standing Alfvén wave current system at Io—Voyager 1 observations. J. Geophys. Res. 86, 8513–8521 (1981)

    ADS  Google Scholar 

  • A.T. Aikio et al., On the origin of the high-altitude electric field fluctuations in the auroral zone. J. Geophys. Res. 101, 27,157–27,170 (1996)

    ADS  Google Scholar 

  • H. Alfvén, Existence of electrodynamic-hydrodynamic waves. Nature 150, 405–406 (1942)

    ADS  Google Scholar 

  • W. Allan, Plasma energization by the ponderomotive force of magnetospheric standing Alfvén waves. J. Geophys. Res. 98, 11383 (1993)

    ADS  Google Scholar 

  • W. Allan, A.N. Wright, Magnetotail waveguide: Fast and Alfvén waves in the plasma sheet boundary layer and lobe. J. Geophys. Res. 105, 317 (2000)

    ADS  Google Scholar 

  • L. Andersson, R.E. Ergun, D. Newman, J.P. McFadden, C.W. Carlson, Y.-J. Su, Phys. Plasmas 9, 3600 (2002)

    ADS  Google Scholar 

  • V. Angelopoulos, J.A. Chapman, F.S. Mozer, J.D. Scudder, C.T. Russell, K. Tsuruda, T. Mukai, T.J. Hughes, K. Yumoto, Plasma sheet electromagnetic power generation and its dissipation along auroral field lines. J. Geophys. Res. 107(A8), 1181 (2002). doi:10.1029/2001JA900136

    Google Scholar 

  • T.M. Bauer, W. Baumjohann, R.A. Treumann, Neutral sheet oscillations at substorm onset. J. Geophys. Res. 100, 23,737 (1995)

    ADS  Google Scholar 

  • W. Baumjohann, K.-H. Glassmeier, The transient response mechanism and Pi2 pulsations at substorm onset: Review and outlook. Planet. Space Sci. 32, 1361–1370 (1984)

    ADS  Google Scholar 

  • S.H. Bekhor, The computation of field-line resonance frequencies in general geometries: a tool for improving the understanding of magnetospheric configurations. J. Plasma Phys. 72, 1–19 (2006). doi:10.1017/S0022377805004150

    Google Scholar 

  • L.P. Block, Potential double layers in the ionosphere. Cosmic Electrodyn. 3, 349–376 (1972)

    Google Scholar 

  • J. Bloxham, S. Zatman, M. Dumberry, The origin of geomagnetic jerks. Nature 420, 65–68 (2002)

    ADS  Google Scholar 

  • M.H. Boehm et al., High-resolution rocket observations of large-amplitude Alfvén waves. J. Geophys. Res. 95, 12,157–12,171 (1990)

    ADS  Google Scholar 

  • M.H. Boehm et al., Observations of an upward-directed electron beam with the perpendicular temperature of the cold ionosphere. Geophys. Res. Lett. 22(16), 2103–2106 (1995)

    ADS  Google Scholar 

  • J.E. Borovsky, Auroral arc thicknesses as predicted by various theories. J. Geophys. Res. 98, 6101–6138 (1993)

    ADS  Google Scholar 

  • L.J. Cahill et al., Electric and magnetic observations of the structure of standing waves in the magnetosphere. J. Geophys. Res. 91, 8895–8907 (1986)

    ADS  Google Scholar 

  • C.A. Cattell, M. Kim, R.P. Lin, F.S. Mozer, Observations of large electric fields near the plasma sheet boundary by ISEE-1. Geophys. Res. Lett. 9, 539–542 (1982)

    ADS  Google Scholar 

  • C.A. Cattell, F.S. Mozer, K. Tsuruda, H. Hayakawa, M. Nakamura, T. Okada, S. Kokubun, T. Yamamoto, Geotail observations of spiky electric fields and low-frequency waves in the plasma sheet and plasma sheet boundary. Geophys. Res. Lett. 21, 2987–2990 (1994)

    ADS  Google Scholar 

  • C.R. Chappell, Recent satellite measurements of the morphology and dynamics of the plasmasphere. Rev. Geophys. 10, 951–979 (1972)

    ADS  Google Scholar 

  • C.C. Chaston, C.W. Carlson, R.E. Ergun, J.P. McFadden, Alfvén waves, density cavities and electron acceleration observed from the FAST spacecraft. Phys. Scr. T 84, 64 (2000)

    ADS  Google Scholar 

  • C.C. Chaston, J.W. Bonnell, L.M. Peticolas, C.W. Carlson, R.E. Ergun, J.P. McFadden, Driven Alfvén waves and electron acceleration: A FAST case study. Geophys. Res. Lett. (2002). doi:10.1029/2001GL013842

    Google Scholar 

  • C.C. Chaston, J.W. Bonnell, C.W. Carlson, J.P. McFadden, R.E. Ergun, R.J. Strangeway, Properties of small-scale Alfvén waves and accelerated electrons from FAST. J. Geophys. Res. 108(A4), 8003 (2003). doi:10.1029/2002JA009420

    Google Scholar 

  • C.C. Chaston, T.D. Phan, J.W. Bonnell, F.S. Mozer, M. Acuña, M.L. Goldstein, A. Balogh, M. Andre, H. Reme, A. Fazakerley, Drift-kinetic Alfvén waves observed near a reconnection X line in the Earth’s magnetopause. Phys. Rev. Lett. (2005). doi:10.1103/PhysRevLett.95.065002

    Google Scholar 

  • C.C. Chaston et al., Ionospheric erosion by Alfvén waves. J. Geophys. Res. (2006a). doi:10.1029/2005JA011367

    Google Scholar 

  • C.C. Chaston et al., ULF Waves and Auroral Electrons, Magnetospheric ULF Waves: Synthesis and New Directions, in Geophysical Monograph Series, vol. 169, ed. by K. Takahashi, P.J. Chi, R.E. Denton, R.L. Lysak (American Geophysical Union, Washington, 2006b), p. 239

    Google Scholar 

  • C.C. Chaston et al., Large parallel electric fields, currents, and density cavities in dispersive Alfvén waves above the aurora. J. Geophys. Res. (2007a). doi:10.1029/2006JA012007

    Google Scholar 

  • C.C. Chaston et al., How important are dispersive Alfvén waves for auroral particle acceleration? Geophys. Res. Lett. (2007b). doi:10.1029/2006GL029144

    Google Scholar 

  • L. Chen, A. Hasegawa, A theory of long-period magnetic pulsations: 1. Steady state excitation of field line resonance. J. Geophys. Res. 79, 1033 (1974)

    ADS  Google Scholar 

  • S.H. Chen, M.G. Kivelson, On ultralow frequency waves in the lobes of the Earth’s magnetotail. J. Geophys. Res. 96, 15,711–15,723 (1991)

    ADS  Google Scholar 

  • T. Chust, P. Louarn, M. Volwerk, H. de Feraudy, A. Roux, J.-E. Wahlund, B. Holback, Electric fields with a large parallel component observed by Freja spacecraft: Artifacts or real signals? J. Geophys. Res. 103, 215 (1998)

    ADS  Google Scholar 

  • A.B. Collier et al., Evidence of standing waves during a Pi2 pulsation event observed on cluster. Ann. Geophys. 24, 2719–2733 (2006)

    ADS  Google Scholar 

  • J. Dandouras et al., A statistical study of plasma sheet dynamics using ISEE 1 and 2 energetic particle flux data. J. Geophys. Res. 91, 6861–6870 (1986)

    ADS  Google Scholar 

  • J. Dombeck et al., Intense Alfvén waves with compressional mode waves well within the plasma sheet during the main phase of the 21 October 1999 Major Storm and comparison of Major Storm to Non-Storm Substorm PSBL Alfvén wave events, American Geophysical Union, Fall Meeting 2005, abstract #SA13B-05, 2005

  • J. Dombeck, C. Cattell, J.R. Wygant, A. Keiling, J. Scudder, Alfvén waves and Poynting flux observed simultaneously by Polar and FAST in the plasma sheet boundary layer. J. Geophys. Res. 110, A12S90 (2005). doi:10.1029/2005JA011269

    Google Scholar 

  • J.F. Drake, Magnetic reconnection: A kinetic treatment, in Physics of the Magnetopause. Geophysical Monograph, vol. 90, 1995

  • E.M. Dubinin, P.L. Israelevich, N.S. Nikolaeva, Auroral electromagnetic disturbances at an altitude of 900 km: The relationship between the electric and magnetic field variations. Planet. Space. Sci. 38, 97 (1990)

    ADS  Google Scholar 

  • J.W. Dungey, Electrodynamics of the outer atmosphere, in Proceedings of the Ionosphere (Phys. Soc. of London, London, 1955), p. 255

    Google Scholar 

  • M. Engebretson et al., in Magnetospheric ULF Waves: Synthesis and New Directions, ed. by K. Takahashi, P.J. Chi, R.E. Denton, R.L. Lysak. Geophysical Monograph Series, vol. 169 (American Geophysical Union, USA, 2006), pp. 137–156

    Google Scholar 

  • R.E. Ergun, C.W. Carlson, J.P. McFadden, F.S. Mozer, L. Muschietti, I. Roth, Phys. Rev. Lett. 81, 826 (1998)

    ADS  Google Scholar 

  • R.E. Ergun, L. Andersson, Y.-J. Su, D.L. Newman, M.V. Goldman, W. Lotko, C.C. Chaston, C.W. Carlson, Localized parallel electric fields associated with inertial Alfvén waves. Phys. Plasmas 12, 072901 (2005)

    ADS  Google Scholar 

  • G.M. Erickson et al., Electromagnetics of substorm onsets in the near-geosynchronous plasma sheet. J. Geophys. Res. 105, 25265–25290 (2000)

    ADS  Google Scholar 

  • D.H. Fairfield, T. Mukai, M. Brittnacher, G.D. Reeves, S. Kokubun, G.K. Parks, T. Nagai, H. Matsumoto, K. Hashimoto, D.A. Gurnett, T. Yamamoto, Earthward flow bursts in the inner magnetotail and their relation to auroral brightenings, AKR intensifications, geosynchronous particle injections and magnetic activity. J. Geophys. Res. 104, 355–370 (1999)

    ADS  Google Scholar 

  • C.-G. Fälthammar, Plasma physics from laboratory to cosmos—the life and achievements of Hannes Alfvén. IEEE Trans. Plasma Phys. 25(3) (1997)

  • H.U. Frey, T.D. Phan, S.A. Fuselier, S.B. Mende, Continuous magnetic reconnection at Earth’s magnetopause. Nature 426, 533 (2003)

    ADS  Google Scholar 

  • H.U. Frey, Localized aurora beyond the auroral oval. Rev. Geophys. (2007). doi:10.1029/2005RG000174

    Google Scholar 

  • M. Fujimoto, T. Nagai, N. Yokokawa, Y. Yamade, T. Mukai, Y. Saito, S. Kokubun, Tailward electrons at the lobe-plasma sheet interface detected upon polarizations. J. Geophys. Res. 106, 21,255 (2001)

    ADS  Google Scholar 

  • H. Fukunishi, Polarization changes of geomagnetic Pi 2 pulsations associated with the plasmapause. J. Geophys. Res. 80, 98–110 (1975)

    ADS  Google Scholar 

  • J.B. Gary et al., Identification of auroral oval boundaries from in situ magnetic field measurements. J. Geophys. Res. 103, 4187 (1998)

    ADS  Google Scholar 

  • W. Gekelman, Review of laboratory experiments on Alfvén waves and their relationship to space observations. J. Geophys. Res. 104, 14,417–14,435 (1999)

    ADS  Google Scholar 

  • V. Genot et al., Alfvén wave interaction with inhomogeneous plasmas: acceleration and energy cascade towards small-scales. Ann. Geophys. 22(6), 2081–2096 (2004)

    ADS  Google Scholar 

  • K.-H. Glassmeier, C. Carsten, R. Cramm et al., Magnetospheric field line resonances: A comparative planetology approach. Surv. Geophys. 20, 61–109 (1999)

    ADS  Google Scholar 

  • C.K. Goertz, Kinetic Alfvén waves on auroral field lines. Planet. Space Sci. 32, 1387–1392 (1984)

    ADS  Google Scholar 

  • C.K. Goertz, R.W. Boswell, Magnetosphere-ionosphere coupling. J. Geophys. Res. 84, 7239–7246 (1979),

    ADS  Google Scholar 

  • D.A. Gurnett et al., Correlated low-frequency electric and magnetic noise along the auroral field lines. J. Geophys. Res. 89, 8971–8985 (1984)

    ADS  Google Scholar 

  • M. Hamrin, O. Marghitu, K. Rönnmark et al., Observations of concentrated generator regions in the nightside magnetosphere by Cluster/Fast conjunctions. Ann. Geophys. 24, 637–649 (2006)

    ADS  Google Scholar 

  • A. Hardy, M.S. Gussenhoven, R. Raistrick, W.J. McNeil, J. Geophys. Res. 92, 12275 (1987)

    ADS  Google Scholar 

  • A. Hasegawa, Particle acceleration by MHD surface wave and formation of aurora. J. Geophys. Res. 811, 5083–5090 (1976)

    ADS  Google Scholar 

  • D. Hayward, J.W. Dungey, An Alfvén wave approach to auroral field-aligned currents. Planet. Space Sci. 31, 579 (1983)

    ADS  Google Scholar 

  • W.J. Hughes, The effect of the ionosphere on long period magnetospheric micropulsations. Planet. Space Sci. 22, 1167 (1974)

    ADS  Google Scholar 

  • W.J. Hughes, R.J.L. Grard, A second harmonic geomagnetic field line resonance at the inner edge of the plasma sheet: GEOS 1, ISEE 1, and ISEE 2 observations. J. Geophys. Res. 89, 2755–2764 (1984)

    ADS  Google Scholar 

  • P. Janhunen, A. Olsson, J. Hanasz, C.T. Russell, H. Laakso, J.C. Samson, Different Alfvén wave acceleration processes of electrons in substorms at 4–5 R E and 2–3 R E radial distance. Ann. Geophys. 22, 2213–2227 (2004)

    ADS  Google Scholar 

  • P. Janhunen et al., Statistics of a parallel Poynting vector in the auroral zone as a function of altitude using Polar EFI and MFE data and Astrid-2 EMMA data. Ann. Geophys. 23, 1797–1806 (2005)

    ADS  Google Scholar 

  • P. Janhunen et al., Alfvénic electron acceleration in aurora occurs in global Alfvén resonosphere region. Space Sci. Rev. 122, 89–95 (2006). doi:10.1007/s11214-006-7017-5

    ADS  Google Scholar 

  • T. Johansson et al., Intense high-altitude auroral electric fields—temporal and spatial characteristics. Ann. Geophys. 22, 2485–2495 (2004)

    ADS  Google Scholar 

  • T. Karlsson et al., Separating spatial and temporal variations in auroral electric and magnetic fields by Cluster multipoint measurements. Ann. Geophys. 22, 2463–2472 (2004)

    ADS  Google Scholar 

  • A. Keiling, J.R. Wygant, C. Cattell, M. Temerin, F.S. Mozer, C.A. Kletzing, J. Scudder, C.T. Russell, W. Lotko, A.V. Streltsov, Large Alfvén wave power in the plasma sheet boundary layer during the expansion phase of substorms. Geophys. Res. Lett. 27, 3169 (2000)

    ADS  Google Scholar 

  • A. Keiling et al., Properties of large electric fields in the plasma sheet at 4–7 R E measured with Polar. J. Geophys. Res. 106, 5779 (2001a)

    ADS  Google Scholar 

  • A. Keiling, J.R. Wygant, C. Cattell, K.-H. Kim, C.T. Russell, D.K. Milling, M. Temerin, F.S. Mozer, C.A. Kletzing, Pi2 pulsations observed with the Polar satellite and ground stations: Coupling of trapped and propagating fast mode waves to a midlatitude field line resonance. J. Geophys. Res. 106, 25,891 (2001b)

    ADS  Google Scholar 

  • A. Keiling, J.R. Wygant, C. Cattell, W. Peria, G. Parks, M. Temerin, F.S. Mozer, C.A. Kletzing, Correlation of Alfvén wave poynting flux in the plasma sheet at 4–7 R E with ionospheric electron energy flux. J. Geophys. Res. 107(A7), 1132 (2002). doi:10.1029/2001JA900140

    Google Scholar 

  • A. Keiling, K.-H. Kim, J.R. Wygant, C. Cattell, C.T. Russell, C.A. Kletzing, Electrodynamics of a substorm-related field line resonance observed by the Polar satellite in comparison with ground Pi2 pulsations. J. Geophys. Res. 108(A7), 1275 (2003a). doi:10.1029/2002JA009340

    Google Scholar 

  • A. Keiling et al., Global morphology of wave Poynting flux: Powering the aurora. Science 299, 383 (2003b). doi:10.1126/science.1080073

    ADS  Google Scholar 

  • A. Keiling, G.K. Parks, J.R. Wygant, J. Dombeck, F.S. Mozer, C.T. Russell, A.V. Streltsov, W. Lotko, Some properties of Alfvén waves: Observations in the tail lobes and the plasma sheet boundary layer. J. Geophys. Res. 110, A10S11 (2005). doi:10.1029/2004JA010907

    Google Scholar 

  • A. Keiling, G.K. Parks, H. Reme, I. Dandouras, M. Wilber, L. Kistler, C. Owen, A.N. Fazakerley, E. Lucek, M. Maksimovic, N. Cornilleau-Wehrlin, Energy-dispersed ions in the plasma sheet boundary layer and associated phenomena: Ion heating, electron acceleration, Alfvén waves, broadband waves, perpendicular electric field spikes, and auroral emissions. Ann. Geophys. 24, 2685–2707 (2006)

    ADS  Google Scholar 

  • M.C. Kelley, D.J. Knudsen, J.F. Vickrey, Poynting flux measurements on a satellite: A diagnostic tool for space research. J. Geophys. Res. 96, 201–207 (1991)

    ADS  Google Scholar 

  • L. Kepko, M.G. Kivelson, K. Yumoto, Flow bursts, braking, and Pi2 pulsations. J. Geophys. Res. 106, 1903–1916 (2001)

    ADS  Google Scholar 

  • L. Kepko et al., ULF waves in the solar wind as direct drivers of magnetospheric pulsations. Geophys. Res. Lett. 29, 1197 (2002). doi:10.1029/2001GL014405

    ADS  Google Scholar 

  • K.-H. Kim, K. Takahashi, D.-H. Lee, N. Lin, C.A. Cattell, A comparison of Pi2 pulsations in the inner magnetosphere and magnetic pulsations at geosynchronous orbit. J. Geophys. Res. 106, 18,865 (2001)

    ADS  Google Scholar 

  • M.G. Kivelson, D.J. Southwood, Coupling of global magnetospheric MHD eigenmodes to field line resonances. J. Geophys. Res. 91, 4345–4351 (1986)

    ADS  Google Scholar 

  • C.A. Kletzing, S. Hu, Alfvén wave generated electron time dispersion. Geophys. Res. Lett. 28, 693–696 (2001)

    ADS  Google Scholar 

  • C.A. Kletzing, C. Cattell, F.S. Mozer, S.-I. Akasofu, K. Makita, Evidence for electrostatic shocks as the source of discrete auroral arcs. J. Geophys. Res. 88, 4105–4113 (1983)

    ADS  Google Scholar 

  • C.A. Kletzing et al., The electrical and precipitation characteristics of morning sector Sun-aligned auroral arcs. J. Geophys. Res. 101, 17,175–17,189 (1996)

    ADS  Google Scholar 

  • C.A. Kletzing, S. Hu, Alfvén wave generated electron time dispersion. Geophys. Res. Lett. 28, 693–696 (2001)

    ADS  Google Scholar 

  • D.J. Knudsen et al., Alfvén waves in the auroral ionosphere—A numerical model compared with measurements. J. Geophys. Res. 97, 77–90 (1992)

    ADS  Google Scholar 

  • H. Laakso, D.H. Fairfield, C.T. Russell et al., Field-line resonances triggered by a northward IMF turning. Geophys. Res. Lett. 25, 2991–2994 (1998)

    ADS  Google Scholar 

  • L.J. Lanzerotti et al., Storm time Pc 5 magnetic pulsation at the equator in the magnetosphere and its latitude dependence as measured on the ground. J. Geophys. Res. 79(16), 2420–2426 (1974)

    ADS  Google Scholar 

  • M.R. Lessard et al., Simultaneous satellite and ground-based observations of a discretely driven field line resonance. J. Geophys. Res. 104, 12361–12371 (1999)

    ADS  Google Scholar 

  • M.R. Lessard, E.J. Lund, S.L. Jones, R.L. Arnoldy, J.L. Posch, M.J. Engebretson, K. Hayashi, Nature of Pi1B pulsations as inferred from ground and satellite observations. Geophys. Res. Lett. 33, L14108 (2006). doi:10.1029/2006GL026411

    ADS  Google Scholar 

  • S. Levin, K. Whitley, F.S. Mozer, A statistical study of large electric field events in the Earth’s magnetotail. J. Geophys. Res. 88, 7765–7768 (1983)

    ADS  Google Scholar 

  • K. Liou et al., Synoptic auroral distribution: A survey using Polar ultraviolet imagery. J. Geophys. Res. 102, 27197–27206 (1997)

    ADS  Google Scholar 

  • W.W. Liu et al., Theory and observation of auroral substorms: A magnetohydrodynamic approach. J. Geophys. Res. 100, 79 (1995)

    ADS  Google Scholar 

  • W.W. Liu et al., Observation of isolated high-speed auroral streamers and their interpretation as optical signatures of Alfvén waves generated by bursty bulk flows. Geophys. Res. Lett. 35, L04104 (2008). doi:10.1029/2007GL032722

    Google Scholar 

  • W. Lotko, A.V. Streltsov, Magnetospheric resonance, auroral structure and multipoint measurements. Adv. Space Res. 20(4/5), 1067–1073 (1997)

    ADS  Google Scholar 

  • W. Lotko, A.V. Streltsov, C.W. Carlson, Discrete auroral arc, electrostatic shock and suprathermal electrons powered by dispersive, anomalously resistive field line resonances. Geophys. Res. Lett. 25, 4449–4452 (1998)

    ADS  Google Scholar 

  • W. Lotko, The magnetosphere–ionosphere system from the perspective of plasma circulation: A tutorial, J. Atmos. Sol.-Terr. Phys. special issue on “Global Aspects of Magnetosphere-Ionosphere Coupling” (2007)

  • P. Louarn, J.-E. Wahlund, T. Chust, H. de Feraudy, A. Roux, B. Holback, P.O. Dovner, A.I. Eriksson, G. Holmgren, Observations of kinetic Alfvén waves by the Freja satellite. Geophys. Res. Lett. 21, 195–205 (1994)

    Google Scholar 

  • A.T.Y. Lui, C.Z. Cheng, Resonance frequency of stretched magnetic field lines based on a self-consistent equilibrium magnetosphere model. J. Geophys. Res. 106, 25 793–25 802 (2001)

    ADS  Google Scholar 

  • K.A. Lynch et al., Multiple-point electron measurements in a nightside auroral arc: Auroral turbulence II particle observations. Geophys. Res. Let. 26, 3361–3364 (1999)

    ADS  Google Scholar 

  • R.L. Lysak, Theory of auroral zone PiB pulsation spectra. J. Geophys. Res. 93, 5942–5946 (1988)

    ADS  Google Scholar 

  • R.L. Lysak, Electrodynamic coupling of the magnetosphere and ionosphere. Space Sci. Rev. 52, 33–87 (1990)

    ADS  Google Scholar 

  • R.L. Lysak, The relationship between electrostatic shocks and kinetic Alfvén waves. Geophys. Res. Lett. 25(12), 2089–2092 (1998)

    ADS  Google Scholar 

  • R.L. Lysak, C.T. Dum, Dynamics of magnetosphereionosphere coupling including turbulent transport. J. Geophys. Res. 88, 365 (1983)

    ADS  Google Scholar 

  • R.L. Lysak, W. Lotko, On the dispersion relation for shear Alfvén waves. J. Geophys. Res. 101, 5085 (1996)

    ADS  Google Scholar 

  • R.L. Lysak, Y. Song, Nonlocal interactions between electrons and Alfvén waves on auroral field lines. J. Geophys. Res. 110, A10S206 (2005). doi:10.1029/2004JA010803

    Google Scholar 

  • A.J. Mallinckrodt, C.W. Carlson, Relations between transverse electric field sand field-aligned currents. J. Geophys. Res. 83, 1426–1432 (1978)

    ADS  Google Scholar 

  • I.R. Mann, I. Voronkov, M. Dunlop et al., Coordinated ground-based and Cluster observations of large amplitude global magnetospheric oscillations during a fast solar wind interval. Ann. Geophys. 20, 405–426 (2002)

    Article  ADS  Google Scholar 

  • O. Marghitu et al., Experimental investigation of auroral generator regions with conjugate Cluster and FAST data. Ann. Geophys. 24, 619–635 (2006)

    Article  ADS  Google Scholar 

  • G.T. Marklund et al., Temporal evolution of the electric field accelerating electrons away from the auroral ionosphere. Nature 414, 724 (2001)

    ADS  Google Scholar 

  • N.C. Maynard, W.J. Burke, E.M. Basinska, G.M. Erickson, W.J. Hughes, H.J. Singer, A.G. Yahnin, D.A. Hardy, F.S. Mozer, Dynamics of the inner magnetosphere near times of substorm onset. J. Geophys. Res. 101, 7705–7736 (1996)

    ADS  Google Scholar 

  • J.P. McFadden, C.W. Carlson, R.E. Ergun, Microstructure of the auroral acceleration region as observed by FAST. J. Geophys. Res. 104, 1445–14480 (1999)

    Google Scholar 

  • D.B. Melrose, Energy propagation into a flare kernel during a solar flare. Astrophys. J. 387, 403–413 (1992)

    ADS  Google Scholar 

  • S.B. Mende et al., IMAGE and FAST observations of substorm recovery phase aurora. Geophys. Res. Lett. (2002). doi:10.1029/2001GL013027

    Google Scholar 

  • S.B. Mende, C.W. Carlson, H.U. Frey, L.M. Peticolas, N. Østgaard, FAST and IMAGE-FUV observations of a substorm onset. J. Geophys. Res. 108(A9), 1344 (2003a). doi:10.1029/2002JA009787

    Google Scholar 

  • S.B. Mende, C.W. Carlson, H.U. Frey, T.J. Immel, J.-C. Gerard, Image FUV and in situ FAST particle observations of substorm aurorae. J. Geophys. Res. 108(A4), 8010 (2003b). doi:10.1029/2002JA009413

    Google Scholar 

  • S.E. Milan et al., Auroral forms and the field-aligned current structure associated with field line resonances. J. Geophys. Res. 106, 25825–25833 (2001)

    ADS  Google Scholar 

  • E.V. Mishin, M. Forster, ‘Alfvénic shocks’ and low-altitude auroral acceleration. Geophys. Res. Lett. 22, 1745–1748 (1995)

    ADS  Google Scholar 

  • M. Morooka et al., Cluster observations of ULF waves with pulsating electron beams above the high latitude dusk-side auroral region. Geophys. Res. Lett. 31, L05804 (2004). doi:10.1029/2003GL017714

    Google Scholar 

  • F.S. Mozer et al., Observations of paired electrostatic shocks in the polar magnetosphere. Phys. Rev. Lett. 38, 292–295 (1977)

    ADS  Google Scholar 

  • F.S. Mozer, ISEE-1 observations of electrostatic shocks on auroral zone field lines between 2.5 and 7 Earth radii. Geophys. Res. Lett. 8, 823–826 (1981)

    ADS  Google Scholar 

  • F.S. Mozer, C.A. Kletzing, Direct observation of large, quasi-static, parallel electric fields in the auroral acceleration region. Geophys. Res. Lett. 25, 1629–1632 (1998)

    ADS  Google Scholar 

  • T. Nagatsuma et al., Field-aligned currents associated with Alfvén waves in the poleward boundary region of the nightside auroral oval. J. Geophys. Res. 101, 21,715 (1996)

    ADS  Google Scholar 

  • D.L. Newman, M.V. Goldman, M. Spector, F. Perez, Phys. Rev. Lett. 86, 1239 (2001)

    ADS  Google Scholar 

  • M.T. Nose et al., ULF pulsations observed by the ETS-VI satellite: Substorm associated azimuthal Pc 4 pulsations on the nightside. Earth Planets Space 50, 63 (1998)

    ADS  Google Scholar 

  • D.M. Ober et al., Electrodynamics of the poleward auroral border observed by Polar during a substorm on April 22, 1998. J. Geophys. Res. 106, 5927 (2001)

    ADS  Google Scholar 

  • J.V. Olson, Pi2 pulsations and substorm onsets: A review. J. Geophys. Res. 104, 17499–17520 (1999)

    ADS  Google Scholar 

  • H. Osaki, K. Takahashi, H. Fukunishi, T. Nagatsuma, H. Oya, A. Matsuoka, D.K. Milling, Pi2 pulsations observed from the Akebono satellite in the plasmasphere. J. Geophys. Res. 103, 17,605 (1998)

    ADS  Google Scholar 

  • G. Paschmann, S. Haaland, R. Treumann (eds.), Auroral Plasma Physics (Kluwer, Boston, 2003)

    Google Scholar 

  • V.A. Pilipenko, E. Fedorov, M.J. Engebretson, K. Yumoto, Energy budget of Alfvén wave interactions with the auroral acceleration region. J. Geophys. Res. 109, A10204 (2004). doi:10.1029/2004JA010440

    ADS  Google Scholar 

  • V.A. Pilipenko, N.G. Mazur, E.N. Federov, M.J. Engebretson, D.L. Murr, Alfvén wave reflection in a curvilinear magnetic field and formation of Alfvénic resonators on open field lines. J. Geophys. Res. 110, A10S05 (2005)

    Google Scholar 

  • I.J. Rae et al., Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval. J. Geophys. Res. 110, A12211 (2005). doi:10.1029/2005JA011007

    ADS  Google Scholar 

  • R. Rankin, J.C. Samson, V.T. Tikhonchuk, Discrete auroral arcs and nonlinear dispersive field line resonances. Geophys. Res. Lett. 26, 663–666 (1999a)

    ADS  Google Scholar 

  • R. Rankin et al., Auroral density fluctuations on dispersive field line resonances. J. Geophys. Res. 104, 4399 (1999b)

    ADS  Google Scholar 

  • R. Rankin et al., Shear Alfvén waves on stretched magnetic field lines near midnight in Earth’s magnetosphere. Geophys. Res. Lett. 27, 3265 (2000)

    ADS  Google Scholar 

  • R. Rankin et al., Magnetospheric field line resonances: Ground-based observations and modeling. J. Geophys. Res. (2005). doi:10.1029/2004JA010919

    MATH  Google Scholar 

  • B.N. Rogers et al., Role of dispersive waves in collisionless magnetic reconnection. Phys. Rev. Lett. 87, 195004 (2001)

    ADS  Google Scholar 

  • J.M. Ruohoniemi, R.A. Greenwald, K.B. Baker, J.C. Samson, HF radar observations of Pc 5 field line resonances in the midnight/early morning MLT sector. J. Geophys. Res. 96, 15 697–15 710 (1991)

    ADS  Google Scholar 

  • T. Saito, Geomagnetic pulsations. Space Sci. Rev. 10, 319–412 (1969)

    ADS  Google Scholar 

  • O. Saka et al., Ground-satellite correlation of low-altitude Pi2 pulsations: A quasi-periodic field line oscillation in the magnetosphere. J. Geophys. Res. 101, 15433 (1996)

    ADS  Google Scholar 

  • T. Sakurai, R.L. McPherron, Satellite observations of Pi 2 activity at synchronous orbit. J. Geophys. Res. 88, 7015–7027 (1983)

    ADS  Google Scholar 

  • J.C. Samson et al., Latitude-dependent characteristics of long-period geomagnetic micropulsations. J. Geophys. Res. 76, 3675–3683 (1971)

    ADS  Google Scholar 

  • J.C. Samson, T.J. Hughes, F. Creutzberg, D.D. Wallis, R.A. Greenwald, J.M. Ruohoniemi, Observations of a detached discrete arc in association with field line resonances. J. Geophys. Res. 96, 15,683–15,695 (1991a)

    ADS  Google Scholar 

  • J.C. Samson, R.A. Greenwald, J.M. Ruohoniemi, T.J. Hughes, D.D. Wallis, Magnetometer and radar observations of magnetohydrodynamic cavity modes in the earth’s magnetosphere. Can. J. Phys. 69, 929–937 (1991b)

    ADS  Google Scholar 

  • J.C. Samson, D.D. Wallis, T.J. Hughes, F. Creutzberg, J.M. Ruohoniemi, R.A. Greenwald, Substorm intensification and field line resonances in the nightside magnetosphere. J. Geophys. Res. 97, 8459–8518 (1992a)

    ADS  Google Scholar 

  • J.C. Samson, B.G. Harrold, J.M. Ruohoniem, R.A. Greenwald, A.D.M. Walker, Field line resonances associated with MHD waveguides in the magnetosphere. Geophys. Res. Lett. 19, 441–444 (1992b)

    ADS  Google Scholar 

  • J.C. Samson, L.L. Cogger, Q. Pao, Observations of field line resonances, auroral arcs, and auroral vortex structures. J. Geophys. Res. 101, 17 373 (1996)

    ADS  Google Scholar 

  • J.C. Samson, R. Rankin, V. Tikhonchuk, Optical signatures of auroral arcs produced by field-line resonances: comparison w!ith satellite observations and modeling. Ann. Geophys. 21, 933–945 (2003)

    Article  ADS  Google Scholar 

  • J.-A. Sauvaud et al., Case studies of the dynamics of ionospheric ions in the Earth’s magnetotail. J. Geophys. Res. 109, A01212 (2004). doi:10.1029/2003JA009996

    Google Scholar 

  • D. Schriver et al., FAST/Polar conjunction study of field-aligned auroral acceleration and corresponding magnetotail drivers. J. Geophys. Res. 108(A9), 8020 (2003). doi:10.1029/2002JA009426

    Google Scholar 

  • V.S. Semenov et al., A comparison and review of steady-state and time-varying reconnection. Planet. Space Sci. 40, 63–87 (1992)

    ADS  Google Scholar 

  • M. Silberstein, N.F. Otani, Computer simulation of Alfvén waves and double layers along auroral field lines. J. Geophys. Res. 99, 6351 (1994)

    ADS  Google Scholar 

  • H.J. Singer, D.J. Southwood, R.J. Walker, M.G. Kivelson, Alfvén wave resonances in a realistic magnetospheric magnetic field geometry. J. Geophys. Res. 86, 4589 (1981)

    ADS  Google Scholar 

  • N. Singh, Spontaneous formation of current-driven double layers in density depletions and its relevance to solitary Alfvén waves. Geophys. Res. Lett. 29(7), 1147 (2002). doi:10.1029/2001GL014033

    MATH  ADS  Google Scholar 

  • Y. Song, Theoretical constraints on mechanisms for the substorm current wedge, in Substorms-4, ed. by S. Kokubun, Y. Kamide (Terra Scientific, Tokyo, 1998), p. 543

    Google Scholar 

  • Y. Song, R.L. Lysak, Current dynamo effect of 3-d time-dependent reconnection in the dayside magnetopause. Geophys. Res. Lett. 16, 911 (1989)

    ADS  Google Scholar 

  • Y. Song, R.L. Lysak, Displacement current and the generation of parallel electric fields. Phys. Rev. Lett. (2006). doi:10.1103/PhysRevLett.96.145002

    Google Scholar 

  • D.J. Southwood, Some features of field line resonances in the magnetosphere. Planet. Space Sci. 22, 483 (1974)

    ADS  Google Scholar 

  • K. Stasiewicz et al., Cavity resonators and Alfvén resonance cones observed by Freja. J. Geophys. Res. 102, 2565 (1997)

    ADS  Google Scholar 

  • K. Stasiewicz et al., Small scale Alfvénic structure in the aurora. Space Sci. Rev. 92, 423–533 (2000)

    ADS  Google Scholar 

  • T. Streed, C. Cattell, F. Mozer, S. Kokubun, K. Tsuruda, Spiky electric fields in the magnetotail. J. Geophys. Res. 106, 6275–6289 (2001)

    ADS  Google Scholar 

  • A.V. Streltsov, W. Lotko, Small scale “electrostatic” auroral structures and Alfvén waves. J. Geophys. Res. 104, 4411–4426 (1999)

    ADS  Google Scholar 

  • A.V. Streltsov, W. Lotko, Reflection and absorption of Alfvénic power in the low altitude magnetosphere. J. Geophys. Res. 108(A4), 8016 (2003). doi:10.1029/2002JA009425

    Google Scholar 

  • A.V. Streltsov, W. Lotko, Multiscale electrodynamics of the ionosphere-magnetosphere system. J. Geophys. Res. (2004). doi:10.1029/2004JA010457

    Google Scholar 

  • A.V. Streltsov, G. Marklund, Divergent electric fields in downward current channels. J. Geophys. Res. (2006). doi:10.1029/2005JA011196

    MATH  Google Scholar 

  • P.R. Sutcliffe, The association of harmonics in Pi2 power spectra with the plasmapause. Planet. Space Sci. 23, 1581 (1975)

    ADS  Google Scholar 

  • T. Takada, K. Seki, M. Hirahara, T. Terasawa, M. Hoshino, T. Mukai, Two types of PSBL ion beam observed by Geotail: Their relation to low frequency electromagnetic waves and cold ion energization. Adv. Space Res. 36, 1883–1889 (2005a)

    ADS  Google Scholar 

  • T. Takada, K. Seki, M. Hirahara, M. Fujimoto, Y. Saito, H. Hayakawa, T. Mukai, Statistical properties of low-frequency waves and ion beams in the plasma sheet boundary layer: Geotail observations. J. Geophys. Res. 110, A02204 (2005b). doi:10.1029/2004JA010395

    Google Scholar 

  • T. Takada et al., Alfvén waves in the near-PSBL lobe: Cluster observations. Ann. Geophys. 24, 1001–1013 (2006)

    Article  ADS  Google Scholar 

  • K. Takahashi, ULF waves: 1997 IAGA Division 3 reporter review. Ann. Geophys. 16, 787–803 (1998)

    ADS  Google Scholar 

  • K. Takahashi et al., AMPTE/CCE observations of substorm-associated standing Alfvén waves in the midnight sector. Geophys. Res. Lett. 15, 1287–1290 (1988)

    ADS  Google Scholar 

  • K. Takahashi, S.-I. Ohtani, B.J. Anderson, Statistical analysis of Pi 2 pulsations observed by the AMPTE CCE spacecraft in the inner magnetosphere. J. Geophys. Res. 100, 21 929–21 941 (1995)

    ADS  Google Scholar 

  • K. Takahashi, B.J. Anderson, S. Ohtani, Multisatellite study of nightside transient toroidal waves. J. Geophys. Res. 101, 24 815–24 825 (1996)

    ADS  Google Scholar 

  • K. Takahashi, P.J. Chi, R.E. Denton, R.L. Lysak, eds, Magnetospheric ULF Waves: Synthesis and New Directions. Geophysical Monograph Series, vol. 169 (2006)

  • P.K. Toivanen, D.N. Baker, W.K. Peterson, X. Li, E.F. Donovan, A. Viljanen, A. Keiling, J.R. Wygant, C.A. Kletzing, Plasma sheet dynamics observed by the Polar spacecraft in association with substorm onsets. J. Geophys. Res. 106, 19,117–19,130 (2001)

    ADS  Google Scholar 

  • P.K. Toivanen et al., Polar observations of transverse magnetic pulsations initiated at substorm onset in the high-latitude plasma sheet. J. Geophys. Res. 108(A7), 1267 (2003). doi:10.1029/2001JA009141

    Google Scholar 

  • S. Tomczyk et al., Alfvén waves in the solar corona. Science (2007). doi:10.1126/science.1143304

    Google Scholar 

  • R.B. Torbert, F.S. Mozer, Electrostatic shocks as the source of discrete auroral arcs. Geophys. Res. Lett. 5, 135–138 (1978)

    ADS  Google Scholar 

  • M.R. Torr et al., A far ultraviolet imager for the International Solar-Terrestrial Physics Mission, in The Global Geospace Mission, ed. by C.T. Russell (Kluwer Academic, Norwell, 1995), pp. 459–495

    Google Scholar 

  • T.S. Trondsen et al., Asymmetric multiple auroral arcs and inertial Alfvén waves. Geophys. Res. Lett. 24, 2945–2948 (1997)

    ADS  Google Scholar 

  • C.Y. Tu, E. Marsch, MHD structures waves and turbulence in the solar wind: Observations and theories. Space Sci. Rev. 73, 1 (1995)

    ADS  Google Scholar 

  • T. Uozumi, K. Yumoto, H. Kawano et al., Characteristics of energy transfer of Pi 2 magnetic pulsations: Latitudinal dependence. Geophys. Res. Lett. 27, 1619–1622 (2000)

    ADS  Google Scholar 

  • T. Uozumi, K. Yumoto, H. Kawano et al., Propagation characteristic of Pi 2 magnetic pulsations observed at ground high latitudes. J. Geophys. Res. 109, A8 (2004). doi:10.1029/2003JA009898

    Google Scholar 

  • O.L. Vaisberg, L.A. Avanov, J.L. Burch, J.H. Waite Jr., Measurements of plasma in the magnetospheric lobes. Adv. Space Res. 18, 63 (1996)

    ADS  Google Scholar 

  • A. Vaivads et al., What high altitude observations tell us about the auroral acceleration: A Cluster/DMSP conjunction, Geophys. Res. Lett. 30, 1106 (2003). doi:10.1029/2002GL016006

    ADS  Google Scholar 

  • A. Vaivads, Y. Khotyaintsev, M. Andre et al., Structure of the magnetic reconnection diffusion region from four-spacecraft observations. Phys. Rev. Lett. 93, 10 (2004). doi:10.1103/PhysRevLett.93.105001

    Google Scholar 

  • A. Vaivads et al., Microphysics of magnetic reconnection. Space Sci. Rev. 122, 19–27 (2006). doi:10.1007/s11214-006-7019-3

    ADS  Google Scholar 

  • J. Vogt, G. Haerendel, Reflection and transmission of Alfvén waves at the auroral acceleration region. Geophys. Res. Lett. 25, 277 (1998)

    ADS  Google Scholar 

  • J. Vogt, Alfvén wave coupling in the auroral current circuit. Surv. Geophys. 23, 335–377 (2002)

    ADS  Google Scholar 

  • M. Volwerk, P. Louarn, T. Chust, A. Roux, H.  Feraudy, Solitary kinetic Alfvén waves: A study of the Poynting flux. J. Geophys. Res. 101, 13,335 (1996)

    ADS  Google Scholar 

  • J.-E. Wahlund et al., On ion acoustic turbulence and the nonlinear evolution of kinetic Alfvén waves in aurora. Geophys. Res. Lett. 21, 1831–1834 (1994)

    ADS  Google Scholar 

  • J.-E. Wahlund et al., Broadband ELF plasma emission during auroral energization 1. Slow ion acoustic waves. J. Geophys. Res. 103(A3), 4343–4376 (1998)

    ADS  Google Scholar 

  • A.D.M. Walker et al., STARE auroral radar observations of Pc 5 geomagnetic pulsations. J. Geophys. Res. 84, 3373–3388 (1979)

    ADS  Google Scholar 

  • A.D.M. Walker, J.M. Ruohoniemi, K.B. Baker, R.A. Greenwald, J.C. Samson, Spatial and temporal behavior of ULF pulsations observed by the Goose Bay HF radar. J. Geophys. Res. 97, 12 187 (1992)

    ADS  Google Scholar 

  • J.A. Wanliss, R. Rankin, Auroral substorm dynamics and field line resonances. Earth Planets Space 54, 927–932 (2002)

    ADS  Google Scholar 

  • J.A. Wanliss, R. Rankin, J.C. Samson, V.T. Tikhonchuk, Field line resonances in a stretched magnetotail: CANOPUS optical and magnetometer observations. J. Geophys. Res. 107(A7), 1100 (2002). doi:10.1029/2001JA000257

    Google Scholar 

  • M.R. Warner, D. Orr, Time of flight calculations for high latitude geomagnetic pulsations. Planet. Space Sci. 27, 679–689 (1979)

    ADS  Google Scholar 

  • C.L. Waters et al., Low latitude geomagnetic field line resonance: Experiment and modeling. J. Geophys. Res. 99, 17,547–17,558 (1994)

    ADS  Google Scholar 

  • C.L. Waters, J.C. Samson, E.F. Donovan, The temporal variation of the frequency of high latitude field line resonances. J. Geophys. Res. 100, 7987–7996 (1995)

    ADS  Google Scholar 

  • C.E.J. Watt et al., Self-consistent electron acceleration due to inertial Alfvén waves. J. Geophys. Res. (2005). doi:10.1029/2004JA010877

    Google Scholar 

  • D.R. Weimer, D.A. Gurnett, Large-amplitude auroral electric fields measured with DE 1. J. Geophys. Res. 98, 13,557–13,564 (1993)

    ADS  Google Scholar 

  • A.N. Wright et al., Phase mixing and phase motion of Alfvén waves on tail-like and dipole-like magnetic field lines. J. Geophys. Res. 104, 10,159 (1999)

    ADS  Google Scholar 

  • J.R. Wygant et al., Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within the plasma sheet-tail lobe boundary to UVI images: An energy source for the aurora. J. Geophys. Res. 105, 18,675 (2000)

    ADS  Google Scholar 

  • J.R. Wygant et al., Evidence for kinetic Alfvén waves and parallel electron energization at 4–6 R E altitudes in the plasma sheet boundary layer. J. Geophys. Res. 107(A8), 1201 (2002). doi:10.1029/2001JA900113

    Google Scholar 

  • B.-L. Xu et al., Observations of optical aurora modulated by resonant Alfvén waves. J. Geophys. Res. 98, 11,531–11,541 (1993)

    ADS  Google Scholar 

  • Y. Yamade, M. Fujimoto, N. Yokokawa, M.S. Nakamura, Field-aligned currents generated in magnetotail reconnection: 3D Hall-MHD simulations. Geophys. Res. Lett. 27, 1091 (2000)

    ADS  Google Scholar 

  • T.K. Yeoman, M. Lester, Characteristics of MHD waves associated with storm sudden commencements observed by SABRE and ground magnetometers. Planet. Space Sci. 38, 603–616 (1990)

    ADS  Google Scholar 

  • T.K. Yeoman, D. Orr, Phase and spectral power of mid-latitude Pi2 pulsations: Evidence for a plasmaspheric cavity resonance. Planet. Space Sci. 37, 1367 (1989)

    ADS  Google Scholar 

  • T.K. Yeoman et al., Polarization, propagation and MHD wave modes of Pi2 pulsations: SABRE/SAMNET results. Planet. Space Sci. 39, 983–998 (1991)

    ADS  Google Scholar 

  • L.M. Zelenyi, E.E. Grigorenko, A.O. Fedorov, Spatial-temporal ion structures in the Earth’s magnetotail: Beamlets as a result of nonadiabatic impulse acceleration of the plasma. JETP Lett. 80, 663–673 (2004)

    ADS  Google Scholar 

  • Y. Zheng et al., Coordinated observation of field line resonance in the mid-tail. Ann. Geophys. 24, 707–723 (2006)

    Article  ADS  Google Scholar 

  • C.W.S. Ziesolleck, D.R. McDiarmid, Auroral latitude Pc5 field line resonance: Quantized frequencies, spatial characteristics, and diurnal variation. J. Geophys. Res. 99, 5817–5830 (1994)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Keiling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keiling, A. Alfvén Waves and Their Roles in the Dynamics of the Earth’s Magnetotail: A Review. Space Sci Rev 142, 73–156 (2009). https://doi.org/10.1007/s11214-008-9463-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-008-9463-8

Keywords

Navigation