Skip to main content
Log in

Confronting Observations and Modeling: The Role of the Interstellar Magnetic Field in Voyager 1 and 2 Asymmetries

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Magnetic effects are ubiquitous and known to be crucial in space physics and astrophysical media. We have now the opportunity to probe these effects in the outer heliosphere with the two spacecraft Voyager 1 and 2. Voyager 1 crossed, in December 2004, the termination shock and is now in the heliosheath. On August 30, 2007 Voyager 2 crossed the termination shock, providing us for the first time in-situ measurements of the subsonic solar wind in the heliosheath. With the recent in-situ data from Voyager 1 and 2 the numerical models are forced to confront their models with observational data. Our recent results indicate that magnetic effects, in particular the interstellar magnetic field, are very important in the interaction between the solar system and the interstellar medium. We summarize here our recent work that shows that the interstellar magnetic field affects the symmetry of the heliosphere that can be detected by different measurements. We combined radio emission and energetic particle streaming measurements from Voyager 1 and 2 with extensive state-of-the art 3D MHD modeling, to constrain the direction of the local interstellar magnetic field. The orientation derived is a plane ∼60°–90° from the galactic plane. This indicates that the field orientation differs from that of a larger scale interstellar magnetic field, thought to parallel the galactic plane. Although it may take 7–12 years for Voyager 2 to leave the heliosheath and enter the pristine interstellar medium, the subsonic flows are immediately sensitive to the shape of the heliopause. The flows measured by Voyager 2 in the heliosheath indicate that the heliopause is being distorted by local interstellar magnetic field with the same orientation as derived previously. As a result of the interstellar magnetic field the solar system is asymmetric being pushed in the southern direction. The presence of hydrogen atoms tend to symmetrize the solutions. We show that with a strong interstellar magnetic field with our most current model that includes hydrogen atoms, the asymmetries are recovered. It remains a challenge for future works with a more complete model, to explain all the observed asymmetries by V1 and V2. We comment on these results and implications of other factors not included in our present model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • T. Borrmann, H. Fichtner, Adv. Space Res. 35, 2091 (2005)

    Article  ADS  Google Scholar 

  • L.F. Burlaga, N.F. Ness, M.H. Acuna, R.P. Lepping, J.E.P. Connerney, E.C. Stone, F.B. McDonald, Science 23, 2027 (2005)

    Article  ADS  Google Scholar 

  • D.P. Cox, L. Helenius, Astrophys. J. 583, 205 (2003)

    Article  ADS  Google Scholar 

  • A.C. Cummings, E.C. Stone, F.B. McDonald, B.C. Heikkila, N. Lal, W.R. Webber, AGUFMSH51A-1184 (2005)

  • R.B. Decker, S.M. Krimigis, E.C. Roelof, M.E. Hill, T.P. Armstrong et al., Science 309, 2020 (2005)

    Article  ADS  Google Scholar 

  • R. Decker et al., Nature 454, 67 (2008)

    Article  ADS  Google Scholar 

  • V. Florinski, G.P. Zank, N.V. Pogorelov, J. Geophys. Res. 110(A7), A07104 (2005)

    Article  Google Scholar 

  • P.C. Frisch, in Physics of Outer Heliosphere, Proceedings of the 1st COSPAR Colloquium (Pergamon Press, Elmsford, 1990), p. 19

    Google Scholar 

  • P.C. Frisch, Space Sci. Rev. 78, 213 (1996)

    Article  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, Adv. Space Sci. 16, 279 (1995)

    Article  ADS  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, S.C. Allendorf, R.L. Poynter, Science 262, 199 (1993)

    Article  ADS  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, E.C. Stone, Geophys. Res. Lett. 30, SSC8-1 (2003)

    Article  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, I.H. Cairns, J. Mitchell, in 5th Annual IGPP International Astrophysics Conference. AIP Conference Proceedings, vol. 858 (2006), p. 129

  • J. Heerikhuisen, N.V. Pogorelov, G.P. Zank, J.A. le Roux, Astrophys. J. 682, 679 (2008)

    Article  ADS  Google Scholar 

  • V.V. Izmodenov, Space Sci. Rev. (2008), this issue

  • V.V. Izmodenov, D.B. Alexashov, in American Institute of Physics Conference Proceedings, vol. 858 (2006), pp. 14–19

  • V.V. Izmodenov, V.B. Baranov, in The Physics of the Heliospheric Boundaries, ed. by V. Izmodenov, R. Kallenbach. ISSI Scientific Report 5, ESA-ESTEC, Paris (2006), pp. 67–135. (Available online at: http://www.issibern.ch/PDF-Files/SR-005.pdf)

  • V.V. Izmodenov, G. Gloeckler, Y. Malama, Geophys. Res. Lett. 30(7), 3–1 (2003). CiteID 1351, doi:10.1029/2002GL016127

    Article  Google Scholar 

  • V.V. Izmodenov, Y.G. Malama, M. Ruderman, Astron. Astrophys. 429, 1069–1080 (2005a)

    Article  MATH  ADS  Google Scholar 

  • V.V. Izmodenov, D. Alexashov, A. Myasnikov, Astron. Astrophys. 437, L35 (2005b)

    Article  ADS  Google Scholar 

  • V.V. Izmodenov, Y.G. Malama, M.S. Ruderman, J. Adv. Space Res. 41(2), 318–324 (2008a)

    Article  ADS  Google Scholar 

  • V.V. Izmodenov, D.B. Alexashov, S.V. Chalov, O.A. Katushkina, Y.G. Malama, E.A. Provornikova, Space Sci. Rev. (2008b), IBEX issue

  • V.V. Izmodenov et al., Adv. Space Res. (2008c)

  • J.R. Jokipii, Science 307, 1424 (2007)

    Article  Google Scholar 

  • J.R. Jokipii, J. Giacalone, J. Kota, Astrophys. J. 611, L141 (2004)

    Article  ADS  Google Scholar 

  • S.R. Karmesin, P.C. Liewer, J.U. Brackbill, Geophys. Res. Lett. 22, 1153 (1995)

    Article  ADS  Google Scholar 

  • W.S. Kurth, D.A. Gurnett, J. Geophys. Res. 108, LIS2-1 (2003)

    Article  Google Scholar 

  • W.S. Kurth, D.A. Gurnett, F.L. Scarf, R.L. Poynter, Nature 312, 27 (1984)

    Article  ADS  Google Scholar 

  • R. Lallement, E. Quemerais, J.L. Bertaux, S. Ferron, D. Koutroumpa, R. Pellinen, Science 307, 1449 (2005)

    Article  ADS  Google Scholar 

  • T. Linde, PhD thesis, Univ. of Michigan, 1998

  • T.J. Linde, T.I. Gombosi, P.L. Roe, K.G. Powell, D.L. DeZeeuw, J. Geophys. Res. 103, 1889 (1998)

    Article  ADS  Google Scholar 

  • Y.G. Malama, V.V. Izmodenov, S.V. Chalov, Astron. Astrophys. 445(2), 693 (2006)

    Article  ADS  Google Scholar 

  • D. McComas et al., in Physics of the Outer Heliosphere, ed. by V. Florinski, N.V. Pogorelov, G.P. Zank. AIP Conference Proceedings, vol. 19, Riverside, California, 8–13 February 2004 (American Institute of Physics, Melville, 2004), pp. 162–181

    Google Scholar 

  • M. Opher, P.C. Liewer, T.I. Gombosi, W. Manchester, D.L. DeZeeuw, I. Sokolov, G. Toth, Astrophys. J. 591, L61 (2003)

    Article  ADS  Google Scholar 

  • M. Opher, P.C. Liewer, M. Velli, L. Bettarini, T.I. Gombosi, W. Manchester, D.L. DeZeeuw, G. Toth, I. Sokolov, Astrophys. J. 611, 575 (2004)

    Article  ADS  Google Scholar 

  • M. Opher, P. Liewer, M. Velli, T. Gombosi, W. Manchester, D. DeZeew, G. Toth, AGUSMSH23A (2005)

  • M. Opher, E.C. Stone, P.C. Liewer, Astrophys. J. Lett. 640, L71 (2006)

    Article  ADS  Google Scholar 

  • M. Opher, E.C. Stone, T. Gombosi, Science 316, 875 (2007)

    Article  ADS  Google Scholar 

  • M. Opher, E.C. Stone, G. Toth, V. Izmodenov, J. Richardson, T.I. Gombosi, (2008, in preparation)

  • N.V. Pogorelov, T. Matsuda, J. Geophys. Res. 10, 237 (1998)

    Article  ADS  Google Scholar 

  • N.V. Pogorelov, G.P. Zank, Astrophys. J. 636, L161 (2006)

    Article  ADS  Google Scholar 

  • N. Pogorelov, G.P. Zank, T. Ogino, Astrophys. J. 614, 1007 (2004)

    Article  ADS  Google Scholar 

  • N.V. Pogorelov, E.C. Stone, V. Florinski, G.P. Zank, Astrophys. J. 668, 611 (2007)

    Article  ADS  Google Scholar 

  • N.V. Pogorelov, J. Heerikhuisen, G. Zank, Astrophys. J. 675, L41 (2008a)

    Article  ADS  Google Scholar 

  • N.V. Pogorelov, G. Zank, T. Ogino, Adv. Space Res. 41, 306 (2008b)

    Article  ADS  Google Scholar 

  • K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, D.L. DeZeeuw, J. Comput. Phys. 154, 284 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • C. Prested et al., J. Geophys. Res. 113(A6), A06102 (2008). doi:10.1029/2007JA012758

    Article  Google Scholar 

  • R. Ratkiewicz, A. Barnes, G.A. Molvik, J.R. Spreiter, S.S. Stahara, M. Vinokur, S. Venkateswaran, Astron. Astrophys. 335, 363 (1998)

    ADS  Google Scholar 

  • R. Ratkiewicz, L. Ben-Jaffel, J. Geophys. Res. 107, 2 (2002)

    Google Scholar 

  • S. Redfield, J.L. Linsky, Astrophys. J. 673, 383 (2008)

    Article  ADS  Google Scholar 

  • J.D. Richardson, C. Wang, AGUFMSH51A-1186 (2005)

  • J.D. Richardson et al., Nature 454, 63 (2008)

    Article  ADS  Google Scholar 

  • E.C. Stone, A.C. Cummings, F.B. McDonald, B.C. Heikkila, N. Lal, W.R. Webber, Science 23, 2017 (2005)

    Article  ADS  Google Scholar 

  • E.C. Stone et al., Nature 454, 71 (2008)

    Article  ADS  Google Scholar 

  • S. Suess, J. Geophys. Res. 93, 15147 (1993)

    Article  Google Scholar 

  • G. Zank, Space Sci. Rev. 89, 413 (1999)

    Article  ADS  Google Scholar 

  • G. Zank, H.-R. Muller, J. Geophys. Res. 108(A6) SSH7-1 (2003)

    Article  Google Scholar 

  • C.J. Wareing et al., Mon. Not. R. Astron. Soc.: Lett. 372(1), L63–L67 (2006)

    Article  ADS  Google Scholar 

  • H. Washimi, T. Tanaka, Adv. Space Res. 27, 509 (2001)

    Article  ADS  Google Scholar 

  • H. Washimi, G.P. Zank, Q. Hu, T. Tanaka, K. Munakata, Astrophys. J. 670, 139L (2007)

    Article  ADS  Google Scholar 

  • Y.C. Whang, Y.-M. Wang, N.R. Sheeley, L.F. Burlaga, J. Geophys. Res. 110(AR), A03103 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Opher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Opher, M., Richardson, J.D., Toth, G. et al. Confronting Observations and Modeling: The Role of the Interstellar Magnetic Field in Voyager 1 and 2 Asymmetries. Space Sci Rev 143, 43–55 (2009). https://doi.org/10.1007/s11214-008-9453-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-008-9453-x

Keywords

Navigation