Skip to main content
Log in

Stable Isotope Ratios as a Biomarker on Mars

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

As both Earth and Mars have had similar environmental conditions at least for some extended time early in their history (Jakosky and Phillips in Nature 412:237–244, 2001), the intriguing question arises whether life originated and evolved on Mars as it did on Earth (McKay and Stoker in Rev. Geophys. 27:189–214, 1989). Conceivably, early autotrophic life on Mars, like early life on Earth, used irreversible enzymatically enhanced metabolic processes that would have fractionated stable isotopes of the elements C, N, S, and Fe. Several important assumptions are made when such isotope fractionations are used as a biomarker. The purpose of this article is two-fold: (1) to discuss these assumptions for the case of carbon and to summarize new insights in abiologic reactions, and (2) to discuss the use of other stable isotope systems as a potential biomarker. It is concluded that isotopic biomarker studies on Mars will encounter several important obstacles. In the case of carbon isotopes, the most important obstacle is the absence of a contemporary abiologic carbon reservoir (such as carbonate deposits on Earth) to act as isotopic standard. The presence of a contemporary abiologic sulfate reservoir (evaporite deposits) suggests that sulfur isotopes can be used as a potential biomarker for sulfate-reducing bacteria. The best approach for tracing ancient life on Mars will be to combine several biomarker approaches; to search for complexity, and to combine small-scale isotopic variations with chemical, mineralogical, and morphological observations. An example of such a study can be a layer-specific correlation between δ 13C and δ 34S within an ancient Martian evaporite, which morphologically resembles the typical setting of a shallow marine microbial mat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A.C. Allwood, M.R. Walter, B.S. Kamber, C.P. Marshall, I.W. Burch, Nature 441, 714–718 (2006)

    Article  ADS  Google Scholar 

  • M. Brasier, O.R. Green, A.P. Jephcoat, A. Kleppe, M.J. Van Kranendonk, J.F. Lindsay, A. Steele, N.V. Grassineau, Nature 416, 76–81 (2002)

    Article  ADS  Google Scholar 

  • J.J. Brocks, G.A. Logan, R. Buick, R.E. Summons, Science 285, 1033–1036 (1999)

    Article  Google Scholar 

  • T.D. Bullen, A.F. White, C.W. Childs, D.V. Vivit, M.S. Schulz, Geology 29, 699–702 (2001)

    Article  ADS  Google Scholar 

  • S.L. Cady, J.D. Farmer, J.P. Grotzinger, J.W. Schopf, A. Steele, Astrobiology 3, 351–368 (2003)

    Article  ADS  Google Scholar 

  • D.E. Canfield, R. Raiswell, Am. J. Sci. 299, 697–723 (1999)

    Article  Google Scholar 

  • S. Chang, D.J. Des Marais, R. Mack, S.L. Miller, G.E. Strathearn, in Earth’s Earliest Biosphere, ed. by J.W. Schopf (Princeton University Press, Princeton, 1983)

    Google Scholar 

  • V. Chevrier, F. Poulet, J.-P. Bibring, Nature 448, 60–63 (2007)

    Article  ADS  Google Scholar 

  • L.R. Croal, C.M. Johnson, B.L. Beard, D.K. Newman, Geochimica Cosmochimica Acta 68, 1227–1242 (2004)

    Article  ADS  Google Scholar 

  • D.J. Des Marais, in Stable Isotope Geochemistry, ed. by J.W. Valley, D.R. Cole (Mineralogical Society of America, Washington, 2001)

    Google Scholar 

  • D.J. Des Marais, J.G. Morre, Earth Planet. Sci. Lett. 69, 43–47 (1984)

    Article  ADS  Google Scholar 

  • D.I. Foustoukos, W.E.J. Seyfried, Science 304, 1002–1005 (2004)

    Article  ADS  Google Scholar 

  • M.P. Golombek, N.T. Bridges, J. Geophys. Res. 105, 1841–1853 (2000)

    Article  ADS  Google Scholar 

  • J.M. Hayes, in Stable Isotope Geochemistry, ed. by J.W. Valley, D.R. Cole (Mineralogical Society of America, Washington, 2001)

    Google Scholar 

  • N.G. Holm, J.L. Charlou, Earth Planet. Sci. Lett. 191, 1–8 (2001)

    Article  ADS  Google Scholar 

  • B.M. Jakosky, R.J. Phillips, Nature 412, 237–244 (2001)

    Article  ADS  Google Scholar 

  • C.M. Johnson, B.L. Beard, E.E. Roden, D.K. Newman, K.H. Nealson, Geochemistry of Non-traditional Stable Isotopes. Mineralogical Society of America, 2004

  • N.E. Kitchen, J.W. Valley, J. Metamorph. Geol. 13, 577–594 (1995)

    Article  Google Scholar 

  • V.A. Krasnopolsky, M.J. Mumma, G.L. Bjoraker, D.E. Jennings, Icarus 124, 553–568 (1996)

    Article  ADS  Google Scholar 

  • C. Kung, R. Hayatsu, M.H. Studier, R.N. Clayton, Earth Planet. Sci. Lett. 46, 141–146 (1979)

    Article  ADS  Google Scholar 

  • M.S. Lancet, E. Anders, Science 170, 980–982 (1970)

    Article  ADS  Google Scholar 

  • J.F. Lindsay, M.D. Brasier, N. McLoughlin, O.R. Green, M. Fogel, A. Steele, S.A. Mertzman, Precambr. Res. 143, 1–22 (2005)

    Article  Google Scholar 

  • D.R. Lowe, Geology 22, 387–390 (1994)

    Article  ADS  Google Scholar 

  • F.J. Luque, J.D. Pasteris, B. Wopenka, M. Rodas, J.F. Barrenechea, Am. J. Sci. 298, 471–498 (1998)

    Article  Google Scholar 

  • C.P. Marshall, G.D. Love, C.E. Snape, A.C. Hill, A.C. Allwood, M.R. Walter, M.J. Van Kranendonk, S.A. Bowden, S.P. Sylva, R.E. Summons, Precambr. Res. 155, 1–23 (2007)

    Article  Google Scholar 

  • T.M. McCollom, Geochimica Cosmochimica Acta 67, 311–317 (2003)

    Article  ADS  Google Scholar 

  • T.M. McCollom, J.S. Seewald, Earth Planet. Sci. Lett. 243, 74–84 (2006)

    Article  ADS  Google Scholar 

  • C.P. McKay, C.R. Stoker, Rev. Geophys. 27, 189–214 (1989)

    Article  ADS  Google Scholar 

  • H. Naraoka, M. Ohtake, S. Maruyama, H. Ohmoto, Chem. Geol. 133, 251–260 (1996)

    Article  Google Scholar 

  • A.O. Nier, E.A. Gulbransen, J. Am. Chem. Soc. 61, 697–698 (1939)

    Article  Google Scholar 

  • E.G. Nisbet, N.H. Sleep, Nature 409, 1083–1091 (2001)

    Article  ADS  Google Scholar 

  • S. Ono, B. Wing, D. Johnston, J. Farquhar, D. Rumble, Geochimica Cosmochimica Acta 70, 2238–2252 (2006)

    Article  ADS  Google Scholar 

  • D. Papineau, S.J. Mojzsis, J.A. Karhu, B. Marty, Chem. Geol. 216, 37–58 (2005)

    Article  Google Scholar 

  • P. Philippot, M. van Zuilen, K. Lepot, C. Thomazo, J. Farquhar, M.J. van Krandenok, Science 317, 1534–1537 (2007)

    Article  ADS  Google Scholar 

  • D.L. Pinti, K. Hashizume, J. Matsuda, Geochimica Cosmochimica Acta 65, 2301–2315 (2001)

    Article  ADS  Google Scholar 

  • J.B. Pollack, J.F. Kasting, S.M. Richardson, K. Poliakoff, Icarus 71, 203–224 (1987)

    Article  ADS  Google Scholar 

  • T. Rahn, J.M. Eiler, Geochimica Cosmochimica Acta 65, 839–846 (2001)

    Article  ADS  Google Scholar 

  • F. Robert, Geochimica Cosmochimica Acta 52, 1473–1478 (1988)

    Article  ADS  Google Scholar 

  • M.T. Rosing, Science 283, 674–676 (1999)

    Article  ADS  Google Scholar 

  • L.J. Rothschild, D. DesMarais, Adv. Space Res. 9, 159–165 (1989)

    Article  ADS  Google Scholar 

  • M. Schidlowski, Adv. Space Res. 12, 101–110 (1992)

    Article  ADS  Google Scholar 

  • M. Schidlowski, Precambr. Res. 106, 117–134 (2001)

    Article  Google Scholar 

  • J.W. Schopf, Earth’s Earliest Biosphere, Its Origin and Evolution (Princeton University Press, Princeton, 1983)

    Google Scholar 

  • J.W. Schopf, Science 260, 640–646 (1993)

    Article  ADS  Google Scholar 

  • J.W. Schopf, C. Klein, The Proterozoic Biosphere: A Multidisciplinary Study (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  • J.W. Schopf, A. Kudryavtsev, D.G. Agresti, T.J. Wdowiak, A.D. Czaja, Nature 416, 73–76 (2002)

    Article  ADS  Google Scholar 

  • M.A. Sephton, A.B. Verchovsky, P.A. Bland, I. Gilmour, M.M. Grady, I.P. Wright, Geochimica Cosmochimica Acta 67, 2093–2108 (2003)

    Article  ADS  Google Scholar 

  • Y. Shen, R. Buick, D.E. Canfield, Nature 410, 77–81 (2001)

    Article  ADS  Google Scholar 

  • S.W. Squyres, J.P. Grotzinger, R.E. Arvidson, J.F. Bell, 3rd, W. Calvin, P.R. Christensen, B.C. Clark, J.A. Crisp, W.H. Farrand, K.E. Herkenhoff, J.R. Johnson, G. Klingelhofer, A.H. Knoll, H.Y. McSween Jr., R.V. Morris, J.W. Rice Jr., R. Rieder, L.A. Soderblom, Science 306, 1709–1714 (2004)

    Article  ADS  Google Scholar 

  • H. Strauss, D.J. Des Marais, R.E. Summons, J.M. Hayes, in The Proterozoic Biosphere, ed. by J.W. Schopf, C. Klein (Cambridge University Press, New York, 1992)

    Google Scholar 

  • Y. Ueno, H. Yoshioka, S. Maruyama, Y. Isozaki, Geochimica Cosmochimica Acta 68, 573–589 (2004)

    Article  ADS  Google Scholar 

  • M.A. van Zuilen, A. Lepland, G. Arrhenius, Nature 418, 627–630 (2002)

    Article  ADS  Google Scholar 

  • Y. Watanabe, H. Naraoka, D.J. Wronkiewicz, K.C. Condie, H. Ohmoto, Geochimica Cosmochimica Acta 61, 3441–3459 (1997)

    Article  ADS  Google Scholar 

  • F. Westall, R.L. Folk, Precambr. Res. 126, 313–330 (2003)

    Article  Google Scholar 

  • A.L. Zerkle, C.H. House, S.L. Brantley, Amer. J. Sci. 305, 467–502 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark van Zuilen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Zuilen, M. Stable Isotope Ratios as a Biomarker on Mars. Space Sci Rev 135, 221–232 (2008). https://doi.org/10.1007/s11214-007-9268-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-007-9268-1

Keywords

Navigation