Skip to main content
Log in

Interaction of the Solar Wind with Weak Obstacles: Hybrid Simulations for Weakly Active Comets and for Mars

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Obstacles in the solar wind are weak when their extension is small or comparable to the characteristic ion gyroradii. In this case interactions involve kinetic features, and hybrid models are an adequate description. A hybrid code operating on a curvilinear 3D grid and its application to solar wind interaction with weak obstacles is discussed. The cases of weak comets and the planet Mars are taken as examples. The cometary case is adapted to 67P/Churyumov–Gerasimenko (CG), which is the target of the Rosetta mission. The hybrid simulations follow the evolution of the plasma environment between heliocentric distances of 3.5 AU and 1.75 AU. Beyond 3.5 AU the activity of CG is extremely weak and the cometary ions mainly behave as test particles. For decreasing distances from the Sun the cometary ion production rate increases and the reaction of the cometary plasma to the solar wind becomes significant. Plasma structures such as a cometopause, bow shock and precursors of a magnetic cavity appear. The cometopause separates the cometary plasma and solar-wind plasma in a pronounced way. There is a typical asymmetry in the interaction region, including the tail. In certain respects the structures in the case of Mars are comparable to those of CG. The cometopause is replaced by the ion composition boundary, which separates Martian plasma and solar-wind plasma. The bow shock and the asymmetry in the interaction region are similar to the cometary case. However, the largely constant heliocentric distance of Mars gives rise to much less evolution in the plasma structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acuna, M. H., Connerney, J. E. P., Wasilewski, P., Lin, R. P., Anderson, K. A., Calson, C. W., McFadden, J., Curtis, D. W., Mitchell, D., Reme, H., Azelle, C., Sauvaud, J. A., d&Uston, C., Cros, A., Medale, J. L., Bauer, S. J., Cloutier, P., Mayhew, M., Winterhalter, D., and Ness, N. F.: 1998, Science Magazine, 279, 1676.

    ADS  Google Scholar 

  • A&Hearn, M. F., Millis, R. L., Schleicher, D. G., Osip, D. J., and Birch, P. V.: 1995, Icarus. 118, 223.

    Article  ADS  Google Scholar 

  • A&Hearn, M. F., et al.: 2005, Sci. Express. 10.1126/Science.1118978.

  • Bagdonat, T., and Motschmann, U.: 2002, J. Comput. Phys. 183, 470.

    Article  MATH  ADS  Google Scholar 

  • Bagdonat, T., Motschmann, U., Glassmeier, K.-H., and Kuehrt, E.: 2004, The New Rosetta Targets. Kluwer, Norwell, MA, pp. 153.

    Google Scholar 

  • Böş wetter, A., Bagdonat, T., Motschmann, U., and Sauer, K.: 2004, Ann. Geophys. 22, 4363.

    Article  ADS  Google Scholar 

  • Brecht, S. H.: 1997, J. Geophys. Res. 102, 4743.

    Article  ADS  Google Scholar 

  • Crovisier, J., Colom, P., Gerard, E., Bockelee-Morvan, D., and Bourgois, G.: 2002, Astron. Astrophys. 393, 1053.

    Article  ADS  Google Scholar 

  • Feldman, P. D., A&Hearn, M. F., and Festou, M. C.: 2004, The New Rosetta Targets, Kluwer, Norwell, MA, pp. 47.

    Google Scholar 

  • Hanson, W. B., Sanatani, S., and Zuccaro, D. R.: 1977, J. Geophys. Res. 82, 4351.

    Article  ADS  Google Scholar 

  • Huebner, W. F., Keady, J. J., and Lyon, S. P.: 1992, Astrophys. Space Sci. 195, 1.

    Article  ADS  Google Scholar 

  • Kallio, E. and Janhunen, P.: 2001, J. Geophys. Res. 106, 5617.

    Article  ADS  Google Scholar 

  • Kührt, E.: 1999, Space Sci. Rev. 90, 75.

    Article  ADS  Google Scholar 

  • Kührt, E., and Keller, H. U.: 1994, Icarus 109, 121.

    Article  ADS  Google Scholar 

  • Mäkinen, J. T. T.: 2004, The New Rosetta Targets, Kluwer, Norwell, MA, pp. 61.

    Google Scholar 

  • Neubauer, F. M.: 1987, Astron. Astrophys. 187, 73.

    ADS  MathSciNet  Google Scholar 

  • Parker, E. N.: 1958, Astrophys. J. 128, 664.

    Article  ADS  Google Scholar 

  • Richardson, J. D., Paularena, K. I., Lazarus, A. J., and Belcher, J. W.: 1995, Geophys. Res. Lett. 22, 1469.

    Article  ADS  Google Scholar 

  • Richardson, J. D., Belcher, J. W., Lazarus, A. J., Paularena, K. I., and Gazis, P. R.: 1996, AIP Conference Proceedings, Vol. 382, pp. 483.

    Article  ADS  Google Scholar 

  • Sauer, K. and Dubinin, E.: 2000, Adv. Space Res. 46, 1633.

    Article  ADS  Google Scholar 

  • Sauer, K., Bogdanov, A., and Baumgärtel, K.: 1995, Adv. Space Res. 16, 153.

    Article  ADS  Google Scholar 

  • Sauer, K., Bogdanov, A., Baumgärtel, K., and Dubinin, E.: 1996, Planet. Space Sci. 44, 715.

    Article  ADS  Google Scholar 

  • Shimazu, H.: 2001, J. Geophys. Res. 106, 8333.

    Article  ADS  Google Scholar 

  • Winske, D.: 1985, Space Sci. Rev. 42, 53.

    Article  ADS  Google Scholar 

  • Winske, D.: 2003, Space Plasma Simulation, chap. Hybrid Simulation Codes: Past, Present and Future—A Tutorial, Springer, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Motschmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motschmann, U., Kührt, E. Interaction of the Solar Wind with Weak Obstacles: Hybrid Simulations for Weakly Active Comets and for Mars. Space Sci Rev 122, 197–208 (2006). https://doi.org/10.1007/s11214-006-6218-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-006-6218-2

Keywords

Navigation