Skip to main content
Log in

The LASCO Coronal Brightness Index

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present the construction of a new white-light coronal brightness index (CBI) from the entire archive of observations recorded by the Large Angle Spectrometric Coronagraph (LASCO) C2 camera between 1996 and 2017, comprising two full solar cycles. We reduce all fully calibrated daily C2 observations of the white-light corona into a single daily coronal brightness observation for every day of observation recorded by the instrument, with mean daily brightness values binned into 0.1 \(\mathrm{R}_{\odot}\) radial \(\times1\) degree angular regions from 2.4 – 6.2 \(\mathrm{R}_{\odot}\) for a full 360 degrees. As a demonstration of the utility of the CBI, we construct a new solar irradiance proxy that correlates well with a variety of direct solar irradiance observations, with correlations shown to be in the range of 0.77 – 0.89. We also present a correlation mapping technique to show how irradiance correlations depend on, and relate to, coronal structure/locations, and to demonstrate how the LASCO CBI can be used to perform long-term “spatial correlation” studies to investigate relationships between the solar corona and any arbitrary concurrent geophysical index. Using this technique we find possible relationships between coronal brightness and plasma temperature, interplanetary magnetic field magnitude and (very weakly) proton density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. Obtained from Y.-M. Wang, Priv. Comm.

  2. See https://omniweb.gsfc.nasa.gov/form/dx1.html.

References

  • Andrews, M.D., Howard, R.A.: 2003, LASCO observations of the K-corona from solar minimum to solar maximum and beyond. In: Velli, M., Bruno, R., Malara, F., Bucci, B. (eds.) Solar Wind Ten, American Institute of Physics Conference Series679, 43. DOI .

    Chapter  Google Scholar 

  • Barlyaeva, T., Lamy, P., Llebaria, A.: 2015, Mid-term quasi-periodicities and solar cycle variation of the white-light corona from 18.5 years (1996.0 – 2014.5) of LASCO observations. Solar Phys.290, 2117. DOI .

    Article  ADS  Google Scholar 

  • Billings, D.E.: 1966, A Guide to the Solar Corona, Academic Press, New York.

    Google Scholar 

  • Boyle, C.B., Reiff, P.H., Hairston, M.R.: 1997, Empirical polar cap potentials. J. Geophys. Res.102(A1), 111. DOI .

    Article  ADS  Google Scholar 

  • Broomhall, A.-M., Nakariakov, V.M.: 2015, A comparison between global proxies of the sun’s magnetic activity cycle: inferences from helioseismology. Solar Phys.290(11), 3095. DOI .

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The large angle spectroscopic coronagraph (LASCO). Solar Phys.162, 357. DOI .

    Article  ADS  Google Scholar 

  • Chang, S.C., Nishida, A.: 1973, Spatial structure of transverse oscillations in the interplanetary magnetic field. Astrophys. Space Sci.23(2), 301. DOI .

    Article  ADS  Google Scholar 

  • Clette, F., Cliver, E.W., Lefèvre, L., Svalgaard, L., Vaquero, J.M., Leibacher, J.W.: 2016, Preface to topical issue: recalibration of the sunspot number. Solar Phys.291(9-10), 2479. DOI .

    Article  ADS  Google Scholar 

  • Coddington, O., Lean, J.L., Pilewskie, P., Snow, M., Lindholm, D.: 2016, A solar irradiance climate data record. Bull. Am. Meteorol. Soc.97(7), 1265. DOI .

    Article  ADS  Google Scholar 

  • Colaninno, R.C., Howard, R.A.: 2015, Update of the photometric calibration of the LASCO-C2 coronagraph using stars. Solar Phys.290, 997. DOI .

    Article  ADS  Google Scholar 

  • Cyr, O.C.S., Howard, R.A., Sheeley, N.R., Plunkett, S.P., Michels, D.J., Paswaters, S.E., Koomen, M.J., Simnett, G.M., Thompson, B.J., Gurman, J.B., Schwenn, R., Webb, D.F., Hildner, E., Lamy, P.L.: 2000, Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998. J. Geophys. Res.105(A8), 18169. DOI .

    Article  ADS  Google Scholar 

  • Deng, Y., Huang, Y., Lei, J., Ridley, A.J., Lopez, R., Thayer, J.: 2011, Energy input into the upper atmosphere associated with high-speed solar wind streams in 2005. J. Geophys. Res.116(A5), A05303. DOI .

    Article  ADS  Google Scholar 

  • Dennison, H.A., Howard, R.: 2012, Relation of white light coronal brightness to total solar irradiance. In: Solar Heliospheric and INterplanetary Environment (SHINE 2012), 132.

    Google Scholar 

  • Dewitte, S., Nevens, S.: 2016, The total solar irradiance climate data record. Astrophys. J.830, 25. DOI .

    Article  ADS  Google Scholar 

  • Didkovsky, L.V., Judge, D.L., Wieman, S.R., McMullin, D.: 2010, Minima of solar Cycles 22/23 and 23/24 as seen in SOHO/CELIAS/SEM absolute solar EUV flux. In: Cranmer, S.R., Hoeksema, J.T., Kohl, J.L. (eds.) SOHO-23: Understanding a Peculiar Solar Minimum, Astronomical Society of the Pacific Conference Series428, 73.

    Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys.162, 1. DOI .

    Article  ADS  Google Scholar 

  • Elliott, H.A., McComas, D.J., DeForest, C.E.: 2016, Long-term trends in the solar wind proton measurements. Astrophys. J.832(1), 66. DOI .

    Article  ADS  Google Scholar 

  • Emmert, J.T., Picone, J.M.: 2011, Statistical uncertainty of 1967 – 2005 thermospheric density trends derived from orbital drag. J. Geophys. Res.116, A00H09. DOI .

    Article  ADS  Google Scholar 

  • Feng, S.W., Chen, Y., Li, B., Song, H.Q., Kong, X.L., Xia, L.D., Feng, X.S.: 2011, Streamer wave events observed in solar Cycle 23. Solar Phys.272, 119. DOI .

    Article  ADS  Google Scholar 

  • Fleck, B.: 2004, Eight years of SOHO. In: IAU Symposium 223, 589. DOI .

    Chapter  Google Scholar 

  • Fröhlich, C.: 2006, Solar irradiance variability since 1978. Revision of the pmod composite during solar Cycle 21. Space Sci. Rev.125, 53.

    Article  ADS  Google Scholar 

  • Fröhlich, C.: 2009, Evidence of a long-term trend in total solar irradiance. Astron. Astrophys.501, L27. DOI .

    Article  ADS  Google Scholar 

  • Gardès, B., Lamy, P., Llebaria, A.: 2013, Photometric calibration of the LASCO-C2 coronagraph over 14 years (1996 – 2009). Solar Phys.283, 667. DOI .

    Article  ADS  Google Scholar 

  • Gómez, J.M.R., Vieira, L., Lago, A.D., Palacios, J.: 2018, Coronal electron density temperature and solar spectral irradiance during solar Cycles 23 and 24. Astrophys. J.852(2), 137. DOI .

    Article  ADS  Google Scholar 

  • Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D., van Geel, B., White, W.: 2010, Solar influences on climate. Rev. Geophys.48, RG4001. DOI .

    Article  ADS  Google Scholar 

  • Greenkorn, R.A.: 2012, A comparison of the 10.7-cm radio flux values and the international sunspot numbers for solar activity cycles 19, 20, and 21. Solar Phys.280(1), 205. DOI .

    Article  ADS  Google Scholar 

  • Hansen, J., Sato, M., Kharecha, P., von Schuckmann, K.: 2011, Earth’s energy imbalance and implications. Atmos. Chem. Phys.11, 13421. DOI .

    Article  ADS  Google Scholar 

  • Harder, J.W., Fontenla, J.M., Pilewskie, P., Richard, E.C., Woods, T.N.: 2009, Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett.36, L07801. DOI .

    Article  ADS  Google Scholar 

  • Hoyt, D.V., Schatten, K.H.: 1992, A new look at wolf sunspot numbers in the late 1700s. Solar Phys.138(2), 387. DOI .

    Article  ADS  Google Scholar 

  • Judge, D.L., McMullin, D.R., Ogawa, H.S., Hovestadt, D., Klecker, B., Hilchenbach, M., Mobius, E., Canfield, L.R., Vest, R.E., Watts, R., Tarrio, C., Kuehne, M., Wurz, P.: 1998, First solar EUV irradiances obtained from SOHO by the CELIAS/SEM. Solar Phys.177, 161. DOI .

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev.136, 5. DOI .

    Article  ADS  Google Scholar 

  • Kopp, G., Lean, J.L.: 2011, A new, lower value of total solar irradiance: evidence and climate significance. Geophys. Res. Lett.38, L01706. DOI .

    Article  ADS  Google Scholar 

  • Kopp, G., Dudok de Wit, T., Ball, W.T., Finsterle, W., Frohlich, C., Kokkonen, K., Meftah, M., Schmutz, W.K.: 2018, The new “community-consensus TSI composite” for solar and climate researchers. In: AGU Fall Meeting Abstracts2018, SH32B.

    Google Scholar 

  • Krivova, N.A., Balmaceda, L., Solanki, S.K.: 2007, Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron. Astrophys.467, 335.

    Article  ADS  Google Scholar 

  • Lamy, P., Barlyaeva, T., Llebaria, A., Floyd, O.: 2014, Comparing the solar minima of cycles 22/23 and 23/24: the view from LASCO white light coronal images. J. Geophys. Res.119(1), 47. DOI .

    Article  Google Scholar 

  • Lean, J.L., DeLand, M.T.: 2012, How does the Sun’s spectrum vary? J. Climate25(7), 2555. DOI .

    Article  ADS  Google Scholar 

  • Lean, J.L., Mariska, J.T., Strong, K.T.: 1995, Correlated brightness variations in solar radiative output from the photosphere to the corona. Geophys. Res. Lett.22, 655.

    Article  ADS  Google Scholar 

  • Lean, J.L., Rottman, G., Harder, J., Kopp, G.: 2005, SORCE contributions to new understanding of global change and solar variability. Solar Phys.230(1-2), 27. DOI .

    Article  ADS  Google Scholar 

  • Lean, J.L., Woods, T.N., Eparvier, F.G., Meier, R.R., Strickland, D.J., Correira, J.T., Evans, J.S.: 2011, Solar extreme ultraviolet irradiance: present, past, and future. J. Geophys. Res.116, A01102. DOI .

    Article  ADS  Google Scholar 

  • Lean, J.L., Meier, R.R., Picone, J.M., Sassi, F., Emmert, J.T., Richards, P.G.: 2016, Ionospheric total electron content: spatial patterns of variability. J. Geophys. Res.121(10), 10,367. DOI .

    Article  Google Scholar 

  • Lei, J., Thayer, J.P., Forbes, J.M., Sutton, E.K., Nerem, R.S.: 2008a, Rotating solar coronal holes and periodic modulation of the upper atmosphere. Geophys. Res. Lett.35(10), L10109. DOI .

    Article  ADS  Google Scholar 

  • Lei, J., Thayer, J.P., Forbes, J.M., Sutton, E.K., Nerem, R.S., Temmer, M., Veronig, A.M.: 2008b, Global thermospheric density variations caused by high-speed solar wind streams during the declining phase of solar Cycle 23. J. Geophys. Res.113(A11), A11303. DOI .

    Article  ADS  Google Scholar 

  • Mekaoui, S., Dewitte, S.: 2008, Total solar irradiance measurement and modelling during Cycle 23. Solar Phys.247, 203. DOI .

    Article  ADS  Google Scholar 

  • Morgan, H., Habbal, S.R.: 2007, The long-term stability of the visible f corona at heights of 3 – 6 R⊙. Astron. Astrophys.471(2), L47. DOI .

    Article  ADS  Google Scholar 

  • Morrill, J.S., Korendyke, C.M., Brueckner, G.E., Giovane, F., Howard, R.A., Koomen, M., Moses, D., Plunkett, S.P., Vourlidas, A., Esfandiari, E., Rich, N., Wang, D., Thernisien, A.F., Lamy, P., Llebaria, A., Biesecker, D., Michels, D., Gong, Q., Andrews, M.: 2006, Calibration of the Soho/Lasco C3 white light coronagraph. Solar Phys.233, 331. DOI .

    Article  ADS  Google Scholar 

  • Neugebauer, M., Snyder, C.W.: 1966, Mariner 2 observations of the solar wind: 1. Average properties. J. Geophys. Res.71(19), 4469. DOI .

    Article  ADS  Google Scholar 

  • Parker, G.D., Hansen, R.T., Hansen, S.F.: 1982, Coronal rotation during solar Cycle 20. Solar Phys.80(1), 185. DOI .

    Article  ADS  Google Scholar 

  • Prša, A., Harmanec, P., Torres, G., Mamajek, E., Asplund, M., Capitaine, N., Christensen-Dalsgaard, J., Depagne, É., Haberreiter, M., Hekker, S., Hilton, J., Kopp, G., Kostov, V., Kurtz, D.W., Laskar, J., Mason, B.D., Milone, E.F., Montgomery, M., Richards, M., Schmutz, W., Schou, J., Stewart, S.G.: 2016, Nominal values for selected solar and planetary quantities: IAU 2015 resolution B3. Astron. J.152(2), 41. DOI .

    Article  ADS  Google Scholar 

  • Russell, C.T., Luhmann, J.G., Jian, L.K.: 2010, How unprecedented a solar minimum? Rev. Geophys.48, 253. DOI .

    Article  Google Scholar 

  • Scafetta, N., Willson, R.C.: 2014, ACRIM total solar irradiance satellite composite validation versus TSI proxy models. Astrophys. Space Sci.350(2), 421. DOI .

    Article  ADS  Google Scholar 

  • Schmutz, W., Fehlmann, A., Finsterle, W., Kopp, G., Thuillier, G.: 2013, Total solar irradiance measurements with PREMOS/PICARD. In: American Institute of Physics Conference Series, American Institute of Physics Conference Series1531, 624. DOI .

    Chapter  Google Scholar 

  • Shopov, Y.Y., Stoykova, D.A., Stoitchkova, K., Tsankov, L.T., Tanev, A., Burin, K., Belchev, S., Rusanov, V., Ivanov, D., Stoev, A., Muglova, P., Iliev, I.: 2008, Structure of the solar dust corona and its interaction with the other coronal components. J. Atmos. Solar-Terr. Phys.70(2-4), 356. DOI .

    Article  ADS  Google Scholar 

  • Solanki, S.K., Krivova, N.A., Wenzler, T.: 2005, Irradiance models. Adv. Space Res.35, 376. DOI .

    Article  ADS  Google Scholar 

  • Tapping, K.F.: 2013, The 10.7 cm solar radio flux (f10.7). Space Weather11(7), 394. DOI .

    Article  ADS  Google Scholar 

  • Temerin, M., Li, X.: 2002, A new model for the prediction of Dst on the basis of the solar wind. J. Geophys. Res.107(A12), SMP 31-1. DOI .

    Article  Google Scholar 

  • Temmer, M., Vršnak, B., Veronig, A.M.: 2007, Periodic appearance of coronal holes and the related variation of solar wind parameters. Solar Phys.241(2), 371. DOI .

    Article  ADS  Google Scholar 

  • Thernisien, A.F., Howard, R.A.: 2006, Electron density modeling of a streamer using LASCO data of 2004 January and February. Astrophys. J.642, 523. DOI .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Howard, R.A.: 2006, The proper treatment of coronal mass ejection brightness: a new methodology and implications for observations. Astrophys. J.642, 1216. DOI .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Howard, R.A., Esfandiari, E., Patsourakos, S., Yashiro, S., Michalek, G.: 2010, Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. Astrophys. J.722, 1522. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr., Howard, R.A., Kraemer, J.R., Rich, N.B., Andrews, M.D., Brueckner, G.E., Dere, K.P., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Paswaters, S.E., Socker, D.G., Wang, D., Lamy, P.L., Llebaria, A., Vibert, D., Schwenn, R., Simnett, G.M.: 1997, Origin and evolution of coronal streamer structure during the 1996 minimum activity phase. Astrophys. J.485, 875. DOI .

    Article  ADS  Google Scholar 

  • Webb, D.F., Howard, T.A.: 2012, Coronal mass ejections: observations. Living Rev. Solar Phys.9, 3. DOI .

    Article  ADS  Google Scholar 

  • Willson, R.C.: 1978, Accurate solar ‘constant’ determinations by cavity pyrheliometers. J. Geophys. Res.83(C8), 4003. DOI .

    Article  ADS  Google Scholar 

  • Willson, R.C., Mordvinov, A.V.: 2003, Secular total solar irradiance trend during solar Cycles 21 – 23. Geophys. Res. Lett.30, 3. DOI .

    Article  ADS  Google Scholar 

  • Woods, T.N., Tobiska, W.K., Rottman, G.J., Worden, J.R.: 2000, Improved solar Lyman \(\upalpha\) irradiance modeling from 1947 through 1999 based on UARS observations. J. Geophys. Res.105, 27195. DOI .

    Article  ADS  Google Scholar 

  • Woods, T.N., Eparvier, F.G., Bailey, S.M., Chamberlin, P.C., Lean, J., Rottman, G.J., Solomon, S.C., Tobiska, W.K., Woodraska, D.L.: 2005, Solar EUV experiment (SEE): mission overview and first results. J. Geophys. Res.110, A01312. DOI .

    Article  ADS  Google Scholar 

  • Woods, T.N., Eparvier, F.G., Hock, R., Jones, A.R., Woodraska, D., Judge, D., Didkovsky, L., Lean, J., Mariska, J., Warren, H., McMullin, D., Chamberlin, P., Berthiaume, G., Bailey, S., Fuller-Rowell, T., Sojka, J., Tobiska, W.K., Viereck, R.: 2012, Extreme ultraviolet variability experiment (EVE) on the solar dynamics observatory (SDO): overview of science objectives, instrument design, data products, and model developments. Solar Phys.275, 115. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.J., Usoskin, I., Krivova, N., Kovaltsov, G.A., Baroni, M., Bard, M., Solanki, S.K.: 2018, Solar activity over nine millennia: a consistent multi-proxy reconstruction. Astron. Astrophys. DOI .

    Article  Google Scholar 

  • Yeo, K.L., Solanki, S.K., Norris, C.M., Beeck, B., Unruh, Y.C., Krivova, N.A.: 2017, Solar irradiance variability is caused by the magnetic activity on the solar surface. Phys. Rev. Lett.119(9), 091102. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by NASA Heliophysics grants to SOHO/LASCO and STEREO/SECCHI, NASA’s Earth Science Solar Irradiance Science Team (SIST), and the NRL Edison Memorial Program. The authors wish to thank an anonymous referee, whose feedback has substantially improved our presentation of these results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Battams.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Data Sharing: Obtaining the LASCO CBI

Appendix: Data Sharing: Obtaining the LASCO CBI

We are making available the LASCO CBI as both raw and interpolated data sets, along with the relevant time information, in a number of formats. The primary CBI data product is a \(360\times38\times7094\) data cube representing values obtained from existing data files only (i.e., the time series contains many discontinuities). An alternative data cube we provide is a \(360\times38 \times7777\) data cube representing interpolated observations (i.e. linear interpolation across all missing dates). The CBI data cubes are available as both IDL “.sav” save files and Python/NumPy “.npy” files. File sizes are of the order 406 megabytes for the interpolated data set and 370 megabytes for the raw (not interpolated) data.

Additionally, we provide both “raw” and “full” data files containing the relevant date information (YYYY-M-D) in the following formats: i) IDL ‘.sav’ files; ii) plain text files; iii) NumPy .npy files containing datetime objects for the dates. An accompanying “README” file will contain this information and identify which data products correspond to which filenames. This README file will be updated as the CBI is updated to include new observations. We intend to support and maintain this product through the LASCO mission lifetime.

All aforementioned files are available at the following url: https://lasco-www.nrl.navy.mil/CBI. Should investigators require any additional metadata, we encourage them to contact the corresponding author of this article. We also request that any publications utilizing the LASCO CBI data cite this publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battams, K., Howard, R.A., Dennison, H.A. et al. The LASCO Coronal Brightness Index. Sol Phys 295, 20 (2020). https://doi.org/10.1007/s11207-020-1589-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-1589-1

Keywords

Navigation