Skip to main content
Log in

A New Version of the SOLAR-ISS Spectrum Covering the 165 – 3000 nm Spectral Region

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The accurate measurement of the solar spectrum at the top of the atmosphere and its variability are fundamental inputs for solar physics (Sun modeling), terrestrial atmospheric photochemistry, and Earth’s climate (climate’s modeling). These inputs were the prime objective set in 1996 for the SOLAR International Space Station (ISS). The SOLAR package represents a set of three solar instruments measuring the total and spectral absolute irradiance from 16 nm to 3088 nm. SOLAR was launched with the European Columbus space laboratory in February 2008 aboard the NASA Space Shuttle Atlantis. SOLAR on the ISS tracked the Sun until it was decommissioned in February 2017. The SOLar SPECtrum (SOLSPEC) instrument of the SOLAR payload allowed the measurement of solar spectra in the 165 – 3000 nm wavelength range for almost a decade. Until the end of its mission, SOLAR/SOLSPEC was pushed to its limits to test how it was affected by space environmental effects (external thermal factors) and to better calibrate the space-based spectrometer. To that end, a new solar reference spectrum (SOLAR-ISS – V1.1) representative of the 2008 solar minimum was obtained from the measurements made by the SOLAR/SOLSPEC instrument and its calibrations. The main purpose of this article is to improve the SOLAR-ISS reference spectrum (between 165 and 180 nm in the far ultraviolet, between 216.9 and 226.8 nm in the middle ultraviolet, and between 2400 and 3000 nm in the near-infrared). SOLAR-ISS has a resolution better than 0.1 nm between 165 and 1000 nm, and 1 nm in the 1000 – 3000 nm wavelength range. Finally, a first comparison is made between the new SOLAR-ISS spectrum (V2.0) and the Total and Spectral solar Irradiance Sensor (TSIS-1) spectrum obtained from its first observations from the ISS. Indeed, the launch of TSIS in December 2017 provides a new light on the absolute determination of the solar spectrum and especially in the infrared region of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Bolsée, D.: 2012, Métrologie de la spectrophotométrie solaire absolue: principes, mise en oeuvre et résultats; instrument solspec à bord de la station spatiale internationale (unpublished doctoral dissertation). PhD thesis, Université libre, École polytechnique de Bruxelles.

  • Bolsée, D., Pereira, N., Gillotay, D., Pandey, P., Cessateur, G., Foujols, T., Bekki, S., Hauchecorne, A., Meftah, M., Damé, L., Hersé, M., Michel, A., Jacobs, C., Sela, A.: 2017, SOLAR/SOLSPEC mission on ISS: in-flight performance for SSI measurements in the UV. Astron. Astrophys.600, A21. DOI .

    Article  ADS  Google Scholar 

  • Brasseur, G.P., Solomon, S.: 2005, Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, 3rd ed. Springer, Dordrecht.

    Book  Google Scholar 

  • Chateauneuf, F., Soucy, M.-A.A., Deutsch, C., Blanchard, N., Giroux, J.G.: 2002, Recent developments on the ACE-FTS instrument. In: Strojnik, M., Andresen, B.F. (eds.) Infrared Spaceborne Remote Sensing IX, Proc. SPIE4486, 393. DOI .

    Chapter  Google Scholar 

  • Coddington, O., Lean, J., Pilewskie, P., Snow, M.A., Kopp, G., Richard, E.C., Woods, T.N., DeLand, M.T., Marchenko, S.V.: 2018, A comparative assessment of solar irradiance observations and models at the dawn of TSIS. AGU Fall Meeting. ADS .

  • DeLand, M.T., Floyd, L.E., Marchenko, S., Tiruchirapalli, R.: 2019, Creation of the GSFCSSI2 composite solar spectral irradiance data set. Earth Space Sci.6(7), 1284. DOI .

    Article  ADS  Google Scholar 

  • Elsey, J., Coleman, M.D., Gardiner, T., Shine, K.P.: 2017, Can measurements of the near-infrared solar spectral irradiance be reconciled? A new ground-based assessment between 4,000 and 10,000 cm−1. Geophys. Res. Lett.44, 10. DOI .

    Article  Google Scholar 

  • Fontenla, J.M., Landi, E.: 2018, Bright network, UVA, and the physical modeling of solar spectral and total irradiance in recent solar cycles. Astrophys. J.861, 120. DOI .

    Article  ADS  Google Scholar 

  • Fontenla, J.M., Stancil, P.C., Landi, E.: 2015, Solar spectral irradiance, solar activity, and the near-ultra-violet. Astrophys. J.809, 157. DOI .

    Article  ADS  Google Scholar 

  • Gueymard, C.A.: 2018, Revised composite extraterrestrial spectrum based on recent solar irradiance observations. Solar Energy169, 434. DOI .

    Article  ADS  Google Scholar 

  • Hilbig, T., Weber, M., Bramstedt, K., Noël, S., Burrows, J.P., Krijger, J.M., Snel, R., Meftah, M., Damé, L., Bekki, S., Bolsée, D., Pereira, N., Sluse, D.: 2018, The new SCIAMACHY reference solar spectral irradiance and its validation. Solar Phys.293, 121. DOI .

    Article  ADS  Google Scholar 

  • Kopp, G., Lean, J.L.: 2011, A new, lower value of total solar irradiance: evidence and climate significance. Geophys. Res. Lett.38, 1706. DOI .

    Article  ADS  Google Scholar 

  • Kopp, G., Dudok de Wit, T., Ball, W.T., Finsterle, W., Frohlich, C., Kokkonen, K., Meftah, M., Schmutz, W.K.: 2018, The new “Community-consensus TSI composite” for solar and climate researchers. AGU Fall Meeting. ADS .

  • Kurucz, R.L., Bell, B.: 1995, Atomic Line List, Smithsonian Astrophys. Obs., Cambridge, Mass.

    Google Scholar 

  • Marchenko, S.V., DeLand, M.T., Lean, J.L.: 2016, Solar spectral irradiance variability in cycle 24: observations and models. J. Space Weather Space Clim.6, A40. DOI .

    Article  ADS  Google Scholar 

  • Mauceri, S., Pilewskie, P., Richard, E., Coddington, O., Harder, J., Woods, T.: 2018, Revision of the Sun’s spectral irradiance as measured by SORCE SIM. Solar Phys.293, 161. DOI .

    Article  ADS  Google Scholar 

  • McClintock, W.E., Rottman, G.J., Woods, T.N.: 2005, Solar-stellar irradiance comparison experiment II (solstice II): instrument concept and design. Solar Phys.230, 225. DOI .

    Article  ADS  Google Scholar 

  • Meftah, M., Dewitte, S., Irbah, A., Chevalier, A., Conscience, C., Crommelynck, D., Janssen, E., Mekaoui, S.: 2014, SOVAP/Picard, a spaceborne radiometer to measure the total solar irradiance. Solar Phys.289, 1885. DOI .

    Article  ADS  Google Scholar 

  • Meftah, M., Bolsée, D., Damé, L., Hauchecorne, A., Pereira, N., Irbah, A., Bekki, S., Cessateur, G., Foujols, T., Thiéblemont, R.: 2016, Solar irradiance from 165 to 400 nm in 2008 and UV variations in three spectral bands during solar cycle 24. Solar Phys.291, 3527. DOI .

    Article  ADS  Google Scholar 

  • Meftah, M., Damé, L., Bolsée, D., Pereira, N., Sluse, D., Cessateur, G., Irbah, A., Sarkissian, A., Djafer, D., Hauchecorne, A., Bekki, S.: 2017, A new solar spectrum from 656 to 3088 nm. Solar Phys.292(8), 101. DOI .

    Article  ADS  Google Scholar 

  • Meftah, M., Damé, L., Bolsée, D., Hauchecorne, A., Pereira, N., Sluse, D., Cessateur, G., Irbah, A., Bureau, J., Weber, M., Bramstedt, K., Hilbig, T., Thiéblemont, R., Marchand, M., Lefèvre, F., Sarkissian, A., Bekki, S.: 2018, SOLAR-ISS: a new reference spectrum based on SOLAR/SOLSPEC observations. Astron. Astrophys.611, A1. DOI .

    Article  Google Scholar 

  • Menang, K.P.: 2018, Assessment of the impact of solar spectral irradiance on near-infrared clear-sky atmospheric absorption and heating rates. J. Geophys. Res., Atmos.123, 6460. DOI .

    Article  ADS  Google Scholar 

  • Montmessin, F., Korablev, O., Lefèvre, F., Bertaux, J.-L., Fedorova, A., Trokhimovskiy, A., Chaufray, J.Y., Lacombe, G., Reberac, A., Maltagliati, L., Willame, Y., Guslyakova, S., Gérard, J.-C., Stiepen, A., Fussen, D., Mateshvili, N., Määttänen, A., Forget, F., Witasse, O., Leblanc, F., Vandaele, A.C., Marcq, E., Sandel, B., Gondet, B., Schneider, N., Chaffin, M., Chapron, N.: 2017, SPICAM on Mars Express: a 10 year in-depth survey of the Martian atmosphere. Icarus297, 195. DOI .

    Article  ADS  Google Scholar 

  • Pereira, N., Bolsée, D., Sperfeld, P., Pape, S., Sluse, D., Cessateur, G.: 2018, Metrology of solar spectral irradiance at the top of the atmosphere in the near infrared measured at Mauna Loa Observatory: the PYR-ILIOS campaign. Atmos. Meas. Tech.11, 6605. DOI .

    Article  Google Scholar 

  • Richard, E.C., Pilewskie, P., Kopp, G., Coddington, O., Woods, T.N., Wu, D.L.: 2016, Continuing the solar irradiance data record with TSIS. AGU Fall Meeting. ADS .

  • Richard, E.C., Harber, D., Coddington, O., Beland, S., Chambliss, M., Mauceri, S., Pilewskie, P.: 2018, Implementation of solar spectral irradiance measurements from the international space station: the TSIS-1 first light and early mission results. AGU Fall Meeting. ADS .

  • Rottman, G.: 2005, The SORCE mission. Solar Phys.230, 7. DOI .

    Article  ADS  Google Scholar 

  • Schmutz, W., Fehlmann, A., Finsterle, W., Kopp, G., Thuillier, G.: 2013, Total solar irradiance measurements with PREMOS/PICARD. Am. Inst. Phys.CS-1531, 624. DOI .

    Article  ADS  Google Scholar 

  • Shapiro, A.I., Schmutz, W., Schoell, M., Haberreiter, M., Rozanov, E.: 2010, NLTE solar irradiance modeling with the COSI code. Astron. Astrophys.517, A48. DOI .

    Article  ADS  Google Scholar 

  • Snow, M., McClintock, W.E., Woods, T.N.: 2010, Solar spectral irradiance variability in the ultraviolet from SORCE and UARS solstice. Adv. Space Res.46(3), 296. DOI .

    Article  ADS  Google Scholar 

  • Snow, M., Eparvier, F.G., Harder, J., Jones, A.R., McClintock, W.E., Richard, E., Woods, T.N.: 2018, Ultraviolet solar spectral irradiance variation on solar cycle timescales. In: Banerjee, D., Jiang, J., Kusano, K., Solanki, S. (eds.) IAU Symp.340, 203. DOI .

    Chapter  Google Scholar 

  • Soucy, M.-A.A., Chateauneuf, F., Deutsch, C., Etienne, N.: 2002, ACE-FTS instrument detailed design. In: Barnes, W.L. (ed.) Earth Observing Systems VII, Proc. SPIE4814, 70. DOI .

    Chapter  Google Scholar 

  • Tagirov, R.V., Shapiro, A.I., Schmutz, W.: 2017, NESSY: NLTE spectral synthesis code for solar and stellar atmospheres. Astron. Astrophys.603, A27. DOI .

    Article  ADS  Google Scholar 

  • Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W., Gillotay, D., Simon, P.C., Mandel, H.: 2003, The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions. Solar Phys.214, 1. DOI .

    Article  ADS  Google Scholar 

  • Thuillier, G., Foujols, T., Bolsée, D., Gillotay, D., Hersé, M., Peetermans, W., Decuyper, W., Mandel, H., Sperfeld, P., Pape, S., Taubert, D.R., Hartmann, J.: 2009, SOLAR/SOLSPEC: scientific objectives, instrument performance and its absolute calibration using a blackbody as primary standard source. Solar Phys.257, 185. DOI .

    Article  ADS  Google Scholar 

  • Toon, G.C.: 2017, Solar line list for the tccon 2014 data release. CaltechDATA. DOI . data.caltech.edu/records/251 .

  • Woods, T.N., Chamberlin, P.C., Harder, J.W., Hock, R.A., Snow, M., Eparvier, F.G., Fontenla, J., McClintock, W.E., Richard, E.C.: 2009, Solar irradiance reference spectra (SIRS) for the 2008 whole heliosphere interval (WHI). Geophys. Res. Lett.36, L01101. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The SOLAR/SOLSPEC team acknowledges the support from European Space Agency (ESA), Centre National d’Études Spatiales (CNES, France), Centre National de la Recherche Scientifique (CNRS, France), the Programme National Soleil-Terre (PNST) of the Institut National des Sciences de l’Univers (INSU, France), the PROgramme de Développement d’Expériences scientifiques Office (PRODEX, Belgium), the Belgian Federal Science Policy Office (BELSPO) through the ESA–PRODEX program, and LASP (USA). The LATMOS team gratefully acknowledges Kader Amsif (CNES), François Buisson (CNES), Denis Jouglet (CNES), and François Leblanc (CNRS) for their support in the implementation of a new solar reference spectrum. T. Hilbig, K. Bramstedt, and M. Weber acknowledge the support from the Bundesministerium für Forschung und Technologie (Germany) via the SCIASOL project as part of the priority program ROMIC (Role of the Middle Atmosphere in Climate). The authors wish to thank the anonymous referees for the very useful comments, which improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Meftah.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Irradiance Variations of the Sun and Sun-like Stars

Guest Editors: Greg Kopp and Alexander Shapiro

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meftah, M., Damé, L., Bolsée, D. et al. A New Version of the SOLAR-ISS Spectrum Covering the 165 – 3000 nm Spectral Region. Sol Phys 295, 14 (2020). https://doi.org/10.1007/s11207-019-1571-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1571-y

Keywords

Navigation