Skip to main content
Log in

Hall-coupling of Slow and Alfvén Waves at Low Frequencies in the Lower Solar Atmosphere

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The Hall effect due to weak ionization in the lower solar atmosphere is shown to produce significant coupling between slow magneto-acoustic and Alfvén waves, especially in highly inclined magnetic fields, and even at low frequencies (\({\approx }\, 5\) mHz and above). Based on the exact magneto-acoustic linear wave solutions in a 2D isothermal model atmosphere, a perturbation approach is used to calculate the coupling to Alfvén waves polarized in the third dimension. First, a fast wave is injected at the bottom and is partially and often strongly reflected/converted to a down-going slow wave at the Alfvén-acoustic equipartition height, depending on magnetic field inclination, frequency, and wave number. This slow wave then couples strongly to the down-going Alfvén wave via the Hall effect for realistic Hall parameters. The coupling is strongest for horizontal wavenumbers oriented opposite to the field inclination, and magnetic fields around 100 G, for which large values of the Hall parameter are co-spatial with the region where slow and Alfvén waves have almost identical wave forms. Second, a slow wave is injected at the bottom, and found to couple even more strongly to up-going Alfvén waves in certain regions of the wavenumber–frequency plane where acoustic-gravity waves are evanescent. These results contrast with those for Hall-mediated fast-Alfvén coupling, which occurs higher in the atmosphere and is evident only at much higher frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Avrett, E.H., Loeser, R.: 2008, Models of the solar chromosphere and transition region from SUMER and HRTS observations: formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen. Astrophys. J. Suppl.175, 229. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bogdan, T.J., Brown, T.M., Lites, B.W., Thomas, J.H.: 1993, The absorption of p-modes by sunspots – variations with degree and order. Astrophys. J.406, 723. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bogdan, T.J., Hindman, B.W., Cally, P.S., Charbonneau, P.: 1996, Absorption of p-modes by slender magnetic flux tubes and p-mode lifetimes. Astrophys. J.465, 406. DOI . ADS .

    Article  ADS  Google Scholar 

  • Braun, D.C.: 1995, Scattering of p-modes by sunspots. I. Observations. Astrophys. J.451, 859. DOI . ADS .

    Article  ADS  Google Scholar 

  • Braun, D.C., Duvall, T.L. Jr., Labonte, B.J.: 1988, The absorption of high-degree p-mode oscillations in and around sunspots. Astrophys. J.335, 1015. DOI . ADS .

    Article  ADS  Google Scholar 

  • Braun, D.C., Labonte, B.J., Duvall, T.L. Jr.: 1990, The spatial distribution of p-mode absorption in active regions. Astrophys. J.354, 372. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cally, P.S.: 2009, Phase jumps in local helioseismology. Solar Phys.254, 241. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cally, P.S.: 2017, Alfvén waves in the structured solar corona. Mon. Not. Roy. Astron. Soc.466(1), 413.

    Article  ADS  Google Scholar 

  • Cally, P.S., Bogdan, T.J.: 1993, Solar p-modes in a vertical magnetic field – trapped and damped pi-modes. Astrophys. J.402, 721. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cally, P.S., Bogdan, T.J.: 1997, Simulation of f- and p-mode interactions with a stratified magnetic field concentration. Astrophys. J. Lett.486, L67. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cally, P.S., Bogdan, T.J., Zweibel, E.G.: 1994, Umbral oscillations in sunspots: absorption of p-modes and active region heating by mode conversion. Astrophys. J.437, 505. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cally, P.S., Goossens, M.: 2008, Three-dimensional MHD wave propagation and conversion to Alfvén waves near the solar surface. I. Direct numerical solution. Solar Phys.251, 251. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cally, P.S., Hansen, S.C.: 2011, Benchmarking fast-to-Alfvén mode conversion in a cold magnetohydrodynamic plasma. Astrophys. J.738, 119. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cally, P.S., Khomenko, E.: 2015, Fast-to-Alfvén mode conversion mediated by the hall current. I. Cold plasma model. Astrophys. J.814, 106. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cally, P.S., Khomenko, E.: 2019, Fast-to-Alfvén mode conversion and ambipolar heating in structured media. I. Simplified cold plasma model. Astrophys. J. DOI . ADS .

    Article  Google Scholar 

  • Cally, P.S., Moradi, H., Rajaguru, S.P.: 2016, p-Mode interaction with sunspots. In: Geophysical Monograph Series216, American Geophysical Union, Washington, 489. DOI . ADS . Chap. 28.

    Chapter  Google Scholar 

  • Cranmer, S.R., van Ballegooijen, A.A.: 2005, On the generation, propagation, and reflection of Alfvén waves from the solar photosphere to the distant heliosphere. Astrophys. J. Suppl.156, 265. DOI . ADS .

    Article  ADS  Google Scholar 

  • Crouch, A.D., Cally, P.S.: 1999, The contribution by thin magnetic flux tubes to p-mode line widths. Astrophys. J.521, 878. DOI . ADS .

    Article  ADS  Google Scholar 

  • De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Schrijver, C.J., Title, A.M., Shine, R.A., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Suematsu, Y., Shimizu, T., Nagata, S.: 2007, Chromospheric Alfvénic waves strong enough to power the solar wind. Science318, 1574. DOI . ADS .

    Article  ADS  Google Scholar 

  • González-Morales, P.A., Khomenko, E., Cally, P.S.: 2019, Fast-to-Alfvén mode conversion mediated by Hall current. II. Application to the solar atmosphere. Astrophys. J.870, 94. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hansen, S.C., Cally, P.S., Donea, A.-C.: 2016, On mode conversion, reflection, and transmission of magnetoacoustic waves from above in an isothermal stratified atmosphere. Mon. Not. Roy. Astron. Soc.456(2), 1826. DOI .

    Article  ADS  Google Scholar 

  • Hanson, C.S., Cally, P.S.: 2014, The scattering of f- and p-modes from ensembles of thin magnetic flux tubes: an analytical approach. Astrophys. J.791(2), 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hindman, B.W., Jain, R.: 2008, The generation of coronal loop waves below the photosphere by p-mode forcing. Astrophys. J.677, 769. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jain, R., Hindman, B.W., Braun, D.C., Birch, A.C.: 2009, Absorption of p modes by thin magnetic flux tubes. Astrophys. J.695, 325. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jess, D.B., Mathioudakis, M., Erdélyi, R., Crockett, P.J., Keenan, F.P., Christian, D.J.: 2009, Alfvén waves in the lower solar atmosphere. Science323, 1582. DOI . ADS .

    Article  ADS  Google Scholar 

  • Khomenko, E., Collados, M., Díaz, A., Vitas, N.: 2014, Fluid description of multi-component solar partially ionized plasma. Phys. Plasmas21(9), 092901. DOI . ADS .

    Article  ADS  Google Scholar 

  • Luke, Y.L.: 1975, Mathematical Functions and Their Approximations, Academic Press, New York. DOI . ISBN 978-0-12-459950-5.

    Book  MATH  Google Scholar 

  • Mathioudakis, M., Jess, D.B., Erdélyi, R.: 2013, Alfvén waves in the solar atmosphere. From theory to observations. Space Sci. Rev.175, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Matsumoto, T., Shibata, K.: 2010, Nonlinear propagation of Alfvén waves driven by observed photospheric motions: application to the coronal heating and spicule formation. Astrophys. J.710, 1857. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., de Pontieu, B., Carlsson, M., Hansteen, V., Boerner, P., Goossens, M.: 2011, Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature475, 477. DOI . ADS .

    Article  ADS  Google Scholar 

  • Morton, R.J., Tomczyk, S., Pinto, R.: 2015, Investigating Alfvénic wave propagation in coronal open-field regions. Nat. Commun.6, 7813. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mumford, S.J., Fedun, V., Erdélyi, R.: 2015, Generation of magnetohydrodynamic waves in low solar atmospheric flux tubes by photospheric motions. Astrophys. J.799, 6. DOI . ADS .

    Article  ADS  Google Scholar 

  • Narain, U., Ulmschneider, P.: 1990, Chromospheric and coronal heating mechanisms. Space Sci. Rev.54, 377. DOI . ADS .

    Article  ADS  Google Scholar 

  • Narain, U., Ulmschneider, P.: 1996, Chromospheric and coronal heating mechanisms II. Space Sci. Rev.75, 453. DOI . ADS .

    Article  ADS  Google Scholar 

  • Newington, M.E., Cally, P.S.: 2010, Reflection and conversion of magnetogravity waves in the solar chromosphere: windows to the upper atmosphere. Mon. Not. Roy. Astron. Soc.402, 386. DOI . ADS .

    Article  ADS  Google Scholar 

  • Osterbrock, D.E.: 1961, The heating of the solar chromosphere, plages, and corona by magnetohydrodynamic waves. Astrophys. J.134, 347. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rosenthal, C.S., Julien, K.A.: 2000, Numerical modeling of the absorption and scattering of acoustic radiation by sunspots. Astrophys. J.532, 1230. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schunker, H., Cally, P.S.: 2006, Magnetic field inclination and atmospheric oscillations above solar active regions. Mon. Not. Roy. Astron. Soc.372, 551. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shelyag, S., Cally, P.S., Reid, A., Mathioudakis, M.: 2013, Alfvén waves in simulations of solar photospheric vortices. Astrophys. J. Lett.776(1), L4. DOI . ADS .

    Article  ADS  Google Scholar 

  • Soler, R., Carbonell, M., Ballester, J.L., Terradas, J.: 2013, Alfvén waves in a partially ionized two-fluid plasma. Astrophys. J.767, 171. DOI . ADS .

    Article  ADS  Google Scholar 

  • Spruit, H.C.: 1991, Absorption of p-mode waves by magnetic fields. In: Gough, D., Toomre, J. (eds.) Challenges to Theories of the Structure of Moderate-Mass Stars, Lecture Notes in Physics388, Springer, Berlin, 121. ADS .

    Chapter  Google Scholar 

  • Spruit, H.C., Bogdan, T.J.: 1992, The conversion of p-modes to slow modes and the absorption of acoustic waves by sunspots. Astrophys. J. Lett.391, L109. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tomczyk, S., McIntosh, S.W., Keil, S.L., Judge, P.G., Schad, T., Seeley, D.H., Edmondson, J.: 2007, Alfvén waves in the solar corona. Science317, 1192. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tsap, Y.T., Stepanov, A.V., Kopylova, Y.G.: 2009, Generation and propagation of Alfvén waves in solar atmosphere. In: Gopalswamy, N., Webb, D.F. (eds.) IAU Symposium257, 555. DOI . ADS .

    Chapter  Google Scholar 

  • Tsap, Y.T., Stepanov, A.V., Kopylova, Y.G.: 2011, Energy flux of Alfvén waves in weakly ionized plasma and coronal heating of the Sun. Solar Phys.270, 205. DOI . ADS .

    Article  ADS  Google Scholar 

  • Van Doorsselaere, T., Nakariakov, V.M., Verwichte, E.: 2008, Detection of waves in the solar corona: kink or Alfvén? Astrophys. J. Lett.676, L73. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vranjes, J., Poedts, S., Pandey, B.P., de Pontieu, B.: 2008, Energy flux of Alfvén waves in weakly ionized plasma. Astron. Astrophys.478, 553. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Wedemeyer-Böhm, S., Scullion, E., Steiner, O., Rouppe van der Voort, L., de La Cruz Rodriguez, J., Fedun, V., Erdélyi, R.: 2012, Magnetic tornadoes as energy channels into the solar corona. Nature486, 505. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhugzhda, I.D., Dzhalilov, N.S.: 1984, Magneto-acoustic-gravity waves on the Sun. I – Exact solution for an oblique magnetic field. Astron. Astrophys.132, 45. ADS .

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Raboonik.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Recast of the Momentum Equation

Appendix: Recast of the Momentum Equation

In this appendix, we employ the momentum Equation 2 with the displacement vector written as \(\boldsymbol{\xi}=\xi _{ \perp }\hat{\boldsymbol{e}}_{\perp }+\eta \,\hat{\boldsymbol{e}}_{y}+ \xi _{\parallel }\hat{\boldsymbol{e}}_{\parallel }\), where the ⊥ and ∥ directions are, respectively, perpendicular to and parallel to \({\boldsymbol{B}}_{0}\) in the \(x\)\(z\) plane. For each component we then find

$$\begin{aligned} &-i s^{2} \epsilon _{\text{H}} \cos \theta \bigl(-4 \bigl(-1 + \kappa ^{2}\bigr) \eta + s \bigl(5 \eta ' + s \eta ''\bigr) \bigr) \\ &\quad {}+ \frac{1}{\gamma } \bigl[-4 s^{2} \bigl(i \kappa \cos \theta + \gamma \bigl( \kappa ^{2} -\nu ^{2}\bigr) \sin \theta \bigr) \xi _{\parallel } + 2 i s^{2} \kappa \sin \theta \bigl(2 \xi _{\perp } + s \gamma \xi _{\perp }' \bigr) \\ &\quad {}+ \gamma \cos \theta \bigl(-4 \bigl(\kappa ^{2} \nu ^{2} + s^{2} \bigl(\kappa ^{2} -\nu ^{2}\bigr)\bigr) \xi _{\perp } - 2 i s^{3} \kappa \xi _{\parallel }' + s \nu ^{2} \bigl(\xi _{\perp }' + s \xi _{\perp }'' \bigr) \bigr) \bigr] = 0, \end{aligned}$$
(23)
$$\begin{aligned} &\nu ^{2} \bigl(4 \bigl(s^{2}-\kappa ^{2} \sin ^{2}\theta \bigr) \eta + s \cos \theta \bigl(( \cos \theta -4 i \kappa \sin \theta ) \eta ' + s \cos \theta \, \eta ''\bigr) \bigr) \\ &\quad {}+ \frac{s^{2} \epsilon _{\text{H}}}{\gamma \nu ^{2}} \bigl[-4 \bigl(\kappa ^{2}- \gamma \nu ^{2}\bigr) (i \cos \theta + \kappa \sin \theta ) (\sin \theta \, \xi _{\parallel } + \cos \theta \, \xi _{\perp }) \\ &\quad {}+ 4 \kappa \bigl(1-\gamma \nu ^{2}\bigr) (\cos \theta - i \kappa \sin \theta ) ( \cos \theta \, \xi _{\parallel } - \sin \theta \, \xi _{\perp }) \\ &\quad {}+ s \bigl(-i \bigl(2 \kappa ^{2} - 5 \gamma \nu ^{2}\bigr) \cos \theta + 2 \gamma \kappa \nu ^{2} \sin \theta \bigr) \bigl(\sin \theta \, \xi _{\parallel }' + \cos \theta \, \xi _{\perp }'\bigr) \\ &\quad {}+ s \kappa \bigl(\bigl(5 - 2 \gamma \nu ^{2}\bigr) \cos \theta - 2 i \kappa \sin \theta \bigr) \bigl(\cos \theta \, \xi _{\parallel }'-\sin \theta \, \xi _{\perp }' \bigr) \\ &\quad {}+ i s^{2} \gamma \nu ^{2} \cos \theta \bigl(\sin \theta \, \xi _{\parallel }'' + \cos \theta \, \xi _{\perp }''\bigr) \\ &\quad {}+ s^{2} \kappa \cos \theta \bigl(\cos \theta \, \xi _{\parallel }''-\sin \theta \, \xi _{\perp }''\bigr) \bigr] = 0, \end{aligned}$$
(24)
$$\begin{aligned} & i s^{2} \epsilon _{\text{H}} \sin \theta \bigl(-4 \bigl( \kappa ^{2}-1\bigr) \eta + s \bigl(5 \eta ' + s \eta ''\bigr) \bigr) \\ &\quad {}+ \frac{1}{\gamma } \bigl[s^{2} \cos \theta \bigl(4 \gamma \nu ^{2} \xi _{\parallel } - 4 i ( \gamma -1) \kappa \xi _{\perp } + s \gamma \bigl(3 \xi _{\parallel }' - 2 i \kappa \xi _{\perp }' + s \xi _{\parallel }'' \bigr) \bigr) \\ &\quad {}-\sin \theta \bigl(4 i s^{2} ( \gamma -1 ) \kappa \, \xi _{\parallel } + 4 \gamma \bigl(s^{2}-\kappa ^{2} \bigr) \nu ^{2} \xi _{\perp } \\ &\quad {}+ s \gamma \bigl(2 i s^{2} \kappa \, \xi _{\parallel }' + \bigl(3 s^{2} + \nu ^{2}\bigr)\xi _{\perp }' + s \bigl(s^{2} + \nu ^{2}\bigr) \xi _{\perp }'' \bigr) \bigr) \bigr] = 0. \end{aligned}$$
(25)

We note that it is only Equation 23 that is free from one of the second derivative terms, namely \(\xi _{\parallel }''(s)\). By exploiting this leverage, we solve this equation for \(\xi _{\parallel }(s)\) and eliminate all its derivatives entirely from Equation 25 to find an equation for \(\xi _{\parallel }(s)\) only in terms of \(\xi _{\perp }(s)\), \(\eta (s)\) and their derivatives according to

$$\begin{aligned} \xi _{\parallel } =&\Delta ^{-1} \bigl\{ 2 i \gamma ^{2} \kappa \nu ^{2} s ^{3} \cos ^{2}\theta \, \xi _{\perp }^{(3)} \\ & {}+2 i \gamma \nu ^{2} s^{2} \cos \theta \bigl[(3 \gamma -2) \kappa \cos \theta -2 i \gamma \sin \theta \bigl(\kappa ^{2}+\nu ^{2} \bigr) \bigr] \xi _{\perp }'' \\ & {}+ i \gamma \nu ^{2} s \bigl[-2 i \gamma \sin 2 \theta \bigl( \kappa ^{2}+\nu ^{2} \bigr)-\kappa \bigl(\gamma \bigl(4 \kappa ^{2}-1 \bigr)+2 \bigr) \cos 2 \theta \\ & {}+\kappa \bigl(-4 \gamma \kappa ^{2}+\gamma +8 \gamma s^{2}-2 \bigr) \bigr]\xi _{\perp }' + 8 i\, \xi _{\perp } \bigl[2 \gamma \kappa \nu ^{2} \cos ^{2}\theta \bigl(\kappa ^{2}+(\gamma -1) s^{2} \bigr) \\ & {}+2 \sin \theta \bigl(\gamma \kappa \nu ^{2} s^{2} \sin \theta +i \cos \theta \bigl(\gamma ^{2} \kappa ^{2} \nu ^{2} \bigl(\kappa ^{2}+\nu ^{2} \bigr)+s ^{2} \bigl((\gamma -1) \kappa ^{2}-\gamma ^{2} \nu ^{4} \bigr) \bigr) \bigr) \bigr] \bigr\} \\ & {}- \epsilon _{\text{H}} R_{\parallel }, \end{aligned}$$
(26)

where

$$\begin{aligned} \Delta =& 8 s^{2} \bigl(\cos 2 \theta \bigl(\gamma ^{2} \nu ^{4}-( \gamma -1) \kappa ^{2} \bigr)-\gamma ^{2} \nu ^{4}-i (\gamma -2) \gamma \kappa \nu ^{2} \sin 2 \theta \\ & {}+\kappa ^{2} \bigl(\gamma \bigl(2 \gamma \nu ^{2}-1 \bigr)+1 \bigr) \bigr), \end{aligned}$$
(27)

and \(R_{\parallel }\) is the Alfvén-to-acoustic driving term for displacements in the direction parallel to the unperturbed magnetic field, mediated by the Hall coupling, which describes producing an extra amount of acoustic wave powered by the Alfvén wave. Finally, introducing \(\kappa _{0}\) and \(\kappa _{z}\) defined in Equations 9a, 9b, Equation 26 yields the Hall-forced magneto-acoustic wave equation which takes the following form:

$$\begin{aligned} & 4 \bigl(s^{2} - \kappa ^{2} - 4 \kappa ^{4} - 4 \kappa ^{2} \kappa _{0} ^{2} + 4 \bigl(\kappa ^{4} + s^{2} \kappa _{z}^{2}\bigr) \sec ^{2}\theta - 4 i \kappa ^{3} \tan \theta + s^{2} \tan ^{2}\theta \bigr) \xi _{\perp } \\ &\quad {}+ 4 s \bigl(2 \kappa ^{2} + \kappa _{0}^{2} + \bigl(3 s^{2} - \kappa ^{2}\bigr) \sec ^{2} \theta + 4 i \kappa ^{3} \tan \theta \bigr) \xi _{\perp }' \\ &\quad {}+ 2 s^{2} \bigl(1 + 2 \kappa _{0}^{2} + 2 \bigl(s^{2} - \kappa ^{2}\bigr) \sec ^{2} \theta - 4 i \kappa \tan \theta \bigr) \xi _{\perp }'' \\ &\quad {}+ 4 s^{3} (1 - i \kappa \tan \theta )\xi _{\perp }^{(3)} +s^{4} \xi _{\perp }^{(4)} = \epsilon _{\text{H}} R_{\perp }, \end{aligned}$$
(28)

in which \(R_{\perp }\) symbolizes the Alfvén-to-acoustic forcing term due to the Hall coupling for displacements in the direction perpendicular to the initial magnetic field, which is responsible for production of additional magneto-acoustic waves fueled by the Alfvén wave, and hence is a function of \(\eta (s)\) only.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raboonik, A., Cally, P.S. Hall-coupling of Slow and Alfvén Waves at Low Frequencies in the Lower Solar Atmosphere. Sol Phys 294, 147 (2019). https://doi.org/10.1007/s11207-019-1544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1544-1

Keywords

Navigation