Skip to main content

Advertisement

Log in

Direct Evidence for Magnetic Reconnection in a Solar EUV Nanoflare

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We provide observational evidence that the mechanism of solar EUV nanoflares may be close to the standard flare model. The object of our study was a nanoflare on 25 February 2011, for which we determined a plasma temperature of 3.1 MK, a total thermal energy of \(6.2 \times 10^{25}~\mbox{erg}\), and an electric-current distribution that reaches its maximum at a height of \({\approx}\,1.5~\mbox{Mm}\). Despite the lack of spatial resolution, we reconstructed the 3D magnetic configuration for this event in the potential and non-linear force-free-field interpolations. As a result, we identified four null-points, two of which were coincident with the region of maximal energy release. The nanoflare was initiated by a new small-scale magnetic flux, which appeared on the photosphere about 15 – 20 minutes before the nanoflare. The total free energy stored in the region before the nanoflare was \({\approx}\,8.9 \times 10^{25}~\mbox{erg}\). Only about two-thirds of this amount was transferred into the plasma heating and EUV radiation. We posit that the remaining energy could be transferred during particle acceleration and plasma motions, which are still inaccessible for direct observations in nanoflares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aly, J.J.: 1989, On the reconstruction of the nonlinear force-free coronal magnetic field from boundary data. Solar Phys. 120, 19. DOI . ADS .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J.: 1999, Do EUV nanoflares account for coronal heating? Solar Phys. 190, 233. DOI . ADS .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Holman, G., O’Flannagain, A., Caspi, A., McTiernan, J.M., Kontar, E.P.: 2016, Global energetics of solar flares. III. Nonthermal energies. Astrophys. J. 832, 27. DOI . ADS .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Caspi, A., Cohen, C.M.S., Holman, G., Jing, J., Kretzschmar, M., Kontar, E.P., McTiernan, J.M., Mewaldt, R.A., O’Flannagain, A., Richardson, I.G., Ryan, D., Warren, H.P., Xu, Y.: 2017, Global energetics of solar flares. V. Energy closure in flares and coronal mass ejections. Astrophys. J. 836, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Barnes, W.T., Cargill, P.J., Bradshaw, S.J.: 2016a, Inference of heating properties from “hot” non-flaring plasmas in active region cores. I. Single nanoflares. Astrophys. J. 829, 31. DOI . ADS .

    Article  ADS  Google Scholar 

  • Barnes, W.T., Cargill, P.J., Bradshaw, S.J.: 2016b, Inference of heating properties from “hot” non-flaring plasmas in active region cores. II. Nanoflare trains. Astrophys. J. 833, 217. DOI . ADS .

    Article  ADS  Google Scholar 

  • Benz, A.O., Grigis, P.C.: 2002, Microflares and hot component in solar active regions. Solar Phys. 210, 431. DOI . ADS .

    Article  ADS  Google Scholar 

  • Benz, A.O., Krucker, S.: 2002, Energy distribution of microevents in the quiet solar corona. Astrophys. J. 568, 413. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bogachev, S.A., Somov, B.V., Kosugi, T., Sakao, T.: 2005, The motions of the hard X-ray sources in solar flares: Images and statistics. Astrophys. J. 630, 561. DOI . ADS .

    Article  ADS  Google Scholar 

  • Craig, I.J.D., Sneyd, A.D.: 1986, A dynamic relaxation technique for determining the structure and stability of coronal magnetic fields. Astrophys. J. 311, 451. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cranmer, S.R.: 2018, Low-frequency Alfvén waves produced by magnetic reconnection in the Sun’s magnetic carpet. Astrophys. J. 862, 6. DOI . ADS .

    Article  ADS  Google Scholar 

  • Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291. DOI . ADS .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., Rust, D.M., Bernasconi, P.N., Schmieder, B.: 2002, Statistics, morphology, and energetics of Ellerman bombs. Astrophys. J. 575, 506. DOI . ADS .

    Article  ADS  Google Scholar 

  • Guerreiro, N., Haberreiter, M., Hansteen, V., Schmutz, W.: 2017, Small-scale heating events in the solar atmosphere. II. Lifetime, total energy, and magnetic properties. Astron. Astrophys. 603, A103. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hoyng, P., Brown, J.C., van Beek, H.F.: 1976, High time resolution analysis of solar hard X-ray flares observed on board the ESRO TD-1A satellite. Solar Phys. 48, 197. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hudson, H.S.: 1991, Solar flares, microflares, nanoflares, and coronal heating. Solar Phys. 133, 357. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kirichenko, A.S., Bogachev, S.A.: 2013, Long-duration plasma heating in solar microflares of X-ray class A1.0 and lower. Astron. Lett. 39, 797. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kirichenko, A.S., Bogachev, S.A.: 2017a, Plasma heating in solar microflares: Statistics and analysis. Astrophys. J. 840, 45. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kirichenko, A.S., Bogachev, S.A.: 2017b, The relation between magnetic fields and X-ray emission for solar microflares and active regions. Solar Phys. 292, 120. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kuzin, S.V., Bogachev, S.A., Zhitnik, I.A., Pertsov, A.A., Ignatiev, A.P., Mitrofanov, A.M., Slemzin, V.A., Shestov, S.V., Sukhodrev, N.K., Bugaenko, O.I.: 2009, TESIS experiment on EUV imaging spectroscopy of the Sun. Adv. Space Res. 43, 1001. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Longcope, D.W.: 2005, Topological methods for the analysis of solar magnetic fields. Liv. Rev. Solar Phys. 2, 7. DOI . ADS .

    Article  ADS  Google Scholar 

  • Meyer, K.A., Mackay, D.H., van Ballegooijen, A.A.: 2012, Solar magnetic carpet II: Coronal interactions of small-scale magnetic fields. Solar Phys. 278, 149. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nelson, C.J., Doyle, J.G., Erdélyi, R., Huang, Z., Madjarska, M.S., Mathioudakis, M., Mumford, S.J., Reardon, K.: 2013, Statistical analysis of small Ellerman bomb events. Solar Phys. 283, 307. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nitta, N., van Driel-Gesztelyi, L., Leka, K.D., Shibata, K.: 1996, Emerging flux and flares in NOAA 7260. Adv. Space Res. 17, 201. DOI . ADS .

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1988, Nanoflares and the solar X-ray corona. Astrophys. J. 330, 474. DOI . ADS .

    Article  ADS  Google Scholar 

  • Parnell, C.E., Jupp, P.E.: 2000, Statistical analysis of the energy distribution of nanoflares in the quiet Sun. Astrophys. J. 529, 554. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pevtsov, A.A., Fisher, G.H., Acton, L.W., Longcope, D.W., Johns-Krull, C.M., Kankelborg, C.C., Metcalf, T.R.: 2003, The relationship between X-ray radiance and magnetic flux. Astrophys. J. 598, 1387. DOI . ADS .

    Article  ADS  Google Scholar 

  • Priest, E.: 2014, Magnetohydrodynamics of the Sun, Cambridge University Press, Cambridge. ADS .

    Google Scholar 

  • Priest, E.R., Chitta, L.P., Syntelis, P.: 2018, A cancellation nanoflare model for solar chromospheric and coronal heating. Astrophys. J. Lett. 862, L24. DOI . ADS .

    Article  ADS  Google Scholar 

  • Priest, E., Forbes, T.: 2007, Magnetic Reconnection, Cambridge University Press, Cambridge. ADS .

    MATH  Google Scholar 

  • Reid, A., Mathioudakis, M., Doyle, J.G., Scullion, E., Nelson, C.J., Henriques, V., Ray, T.: 2016, Magnetic flux cancellation in Ellerman bombs. Astrophys. J. 823, 110. DOI . ADS .

    Article  ADS  Google Scholar 

  • Reva, A., Shestov, S., Bogachev, S., Kuzin, S.: 2012, Investigation of Hot X-Ray Points (HXPs) using spectroheliograph Mg xii experiment data from CORONAS-F/SPIRIT. Solar Phys. 276, 97. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schuck, P.W.: 2006, Tracking magnetic footpoints with the magnetic induction equation. Astrophys. J. 646, 1358. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shimizu, T., Tsuneta, S.: 1997, Deep survey of solar nanoflares with Yohkoh. Astrophys. J. 486, 1045. DOI . ADS .

    Article  ADS  Google Scholar 

  • Somov, B.V.: 2007, Plasma Astrophysics, Part II: Reconnection and Flares, Springer, Berlin. ADS .

    Book  Google Scholar 

  • Somov, B.V.: 2012, On the magnetic reconnection of electric currents in solar flares. Astron. Lett. 38, 128. DOI . ADS .

    Article  ADS  Google Scholar 

  • Somov, B.V., Kosugi, T., Hudson, H.S., Sakao, T., Masuda, S.: 2002, Magnetic reconnection scenario of the Bastille Day 2000 flare. Astrophys. J. 579, 863. DOI . ADS .

    Article  ADS  Google Scholar 

  • Stenflo, J.O.: 1985, Measurements of magnetic fields and the analysis of Stokes profiles. Solar Phys. 100, 189. DOI . ADS .

    Article  ADS  Google Scholar 

  • Watanabe, H., Vissers, G., Kitai, R., Rouppe van der Voort, L., Rutten, R.J.: 2011, Ellerman bombs at high resolution. I. Morphological evidence for photospheric reconnection. Astrophys. J. 736, 71. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Russian Science Foundation (project 17-12-01567).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Bogachev.

Ethics declarations

Disclosure of Potential conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulyanov, A.S., Bogachev, S.A., Loboda, I.P. et al. Direct Evidence for Magnetic Reconnection in a Solar EUV Nanoflare. Sol Phys 294, 128 (2019). https://doi.org/10.1007/s11207-019-1472-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1472-0

Keywords

Navigation