Skip to main content
Log in

Fractal Dimensions of Umbral and Penumbral Regions of Sunspots

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The images of sunspots in 16 active regions taken at the University College of the Cayman Islands (UCCI) Observatory on Grand Cayman during June–November 2015 were used to determine their fractal dimensions using the perimeter–area method for the umbral and the penumbral region. Scale-free fractal dimensions of \(2.09 \pm0.42\) and \(1.72 \pm0.4\) were found, respectively. This value was higher than the value determined by Chumak and Chumak (Astron. Astrophys. Trans. 10, 329, 1996), who used a similar method, but only for the penumbral region of their sample set. The umbral and penumbral fractal dimensions for the specific sunspots are positively correlated with \(r = 0.58\). Furthermore, a similar time-series analysis was performed on eight images of AR 12403, from 21 August 2015 to 28 August 2015 taken from the Debrecen Photoheliographic Data (DPD). The correlation is \(r = 0.623\) between the umbral and penumbral fractal dimensions in the time series, indicating that the complexity in morphology indicated by the fractal dimension between the umbra and penumbra followed each other in time as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1a
Figure 1b
Figure 1c
Figure 2a
Figure 2b
Figure 2c
Figure 3a
Figure 3b
Figure 3c
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Notes

  1. Imagej.nih.gov. “ImageJ.” accessed 14 November 2016. https://imagej.nih.gov/ij/index.html .

  2. swpc.noaa.gov. “Sunspots/Solar Cycle|NOAA/NWS Space Weather Prediction Center.” accessed 14 November 2016. http://www.swpc.noaa.gov/phenomena/sunspotssolar-cycle .

References

  • Baranyi, T., Győri, L., Ludmány, A.: 2016, On-line tools for solar data compiled at the Debrecen Observatory and their extensions with the Greenwich sunspot data. Solar Phys. 291, 3081. DOI .

    Article  ADS  Google Scholar 

  • Bershadskii, A.G.: 1990, Large-scale fractal structure in laboratory turbulence, astrophysics, and the ocean. Sov. Phys. Usp. 33, 1073. DOI .

    Article  ADS  Google Scholar 

  • Boffetta, G., Carbone, V., Giuliani, P., Veltri, P., Vulpiani, A.: 1999, Power laws in solar flares: self-organized criticality or turbulence? Phys. Rev. Lett. 83, 4662. DOI .

    Article  ADS  Google Scholar 

  • Chumak, O.: 2005, Self-similar and self-affine structures in the observational data on solar activity. Astron. Astrophys. Trans. 24, 93. DOI .

    Article  ADS  Google Scholar 

  • Chumak, O.V., Chumak, Z.N.: 1996, Sunspots. The model of “elastic sceletons”. Estimation of sunspot umbra fractal dimension. Astron. Astrophys. Trans. 10, 329.

    Article  ADS  Google Scholar 

  • Chumak, O.V., Zhang, H.Q.: 2003, Size-flux relation in solar active regions. Chin. J. Astron. Astrophys. 3, 175. DOI .

    Article  ADS  Google Scholar 

  • Conlon, P.A., Gallagher, P.T., McAteer, R.T.J., Ireland, J., Young, C.A., Kestener, P., Hewett, R.J., Maguire, K.: 2008, Multifractal properties of evolving active regions. Solar Phys. 248, 297. DOI .

    Article  ADS  Google Scholar 

  • De Toma, G., Chapman, G.A., Preminger, D.G., Cookson, A.M.: 2013, Analysis of sunspot area over two Solar Cycles. Astrophys. J. 770, 89. DOI .

    Article  ADS  Google Scholar 

  • Deng, L.: 2016, Multi-fractal property and long-range correlation of chaotic time series. In: 2016 3rd International Conference on Information Science and Control Engineering (ICISCE), IEEE Press, New York, 1361. DOI .

    Chapter  Google Scholar 

  • Deng, L.H., Qu, Z.Q., Yan, X.L., Wang, K.R.: 2013, Phase analysis of sunspot group numbers on both solar hemispheres. Res. Astron. Astrophys. 13, 104. DOI .

    Article  ADS  Google Scholar 

  • Deng, L.H., Li, B., Xiang, Y.Y., Dun, G.T.: 2014, On mid-term periodicities of high-latitude solar activity. Adv. Space Res. 54, 125. DOI .

    Article  ADS  Google Scholar 

  • Deng, L.H., Li, B., Xiang, Y.Y., Dun, G.T.: 2016a, Comparison of chaotic and fractal properties of polar faculae with sunspot activity. Astron. J. 151, 2. DOI .

    Article  ADS  Google Scholar 

  • Deng, L.H., Xiang, Y.Y., Qu, Z.N., An, J.M.: 2016b, Systematic regularity of hemispheric sunspot areas over the past 140 years. Astron. J. 151, 70. DOI .

    Article  ADS  Google Scholar 

  • Feng, S., Xu, Z., Wang, F., Deng, H., Yang, Y., Ji, K.: 2014, Automated detection of low-contrast solar features using the phase-congruency algorithm. Solar Phys. 289, 3985. DOI .

    Article  ADS  Google Scholar 

  • Fletcher, L., Dennis, B.R., Hudson, H.S., Krucker, S., Phillips, K., Veronig, A., Gallagher, P.: 2011, An observational overview of solar flares. Space Sci. Rev. 159, 19. DOI .

    Article  ADS  Google Scholar 

  • Gayathri, R., Selvaraj, R.S.: 2010, Predictability of solar activity using fractal analysis. J. Indian Geophys. Union 14, 89.

    Google Scholar 

  • Georgoulis, M.K.: 2005, Turbulence in the solar atmosphere: manifestations and diagnostics via solar image processing. Solar Phys. 228, 5. DOI .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K.: 2012, Are solar active regions with major flares more fractal, multifractal, or turbulent than others? Solar Phys. 276, 161. DOI .

    Article  ADS  Google Scholar 

  • Greenkorn, R.A.: 2009, Analysis of sunspot activity cycles. Solar Phys. 255, 301. DOI .

    Article  ADS  Google Scholar 

  • Issa, M.A., Issa, M.A., Islam, M.S., Chudnovsky, A.: 2003, Fractal dimension—a measure of fracture roughness and toughness of concrete. Eng. Fract. Mech. 70, 125. DOI .

    Article  Google Scholar 

  • Jaeggli, S., Lin, H., Uitenbroek, H.: 2012, On molecular hydrogen formation and the magnetohydrostatic equilibrium of sunspots. Astrophys. J. 745, 133. DOI .

    Article  ADS  Google Scholar 

  • Lawrence, J.K., Cadavid, A.C., Ruzmaikin, A.A.: 1995, Turbulent and chaotic dynamics underlying solar magnetic variability. Astrophys. J. 455, 366. DOI .

    Article  ADS  Google Scholar 

  • Losa, G.A.: 2012, Fractals and their contribution to biology and medicine. Medicographia 34, 364.

    Google Scholar 

  • Mandelbrot, B.B.: 1983, The Fractal Geometry of Nature, Macmillan & Co., London.

    Google Scholar 

  • Mazzi, B., Vassilicos, J.C.: 2004, Fractal-generated turbulence. J. Fluid Mech. 502, 65. DOI .

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Morse, D., Lawton, J.H., Dodson, M., Williamson, M.H.: 1985, Fractal dimension of vegetation and the distribution of anthropod body lengths. Nature 314, 73. DOI .

    Article  Google Scholar 

  • Panas, E.: 2001, Estimating fractal dimension using stable distributions and exploring long memory through ARFIMA models in Athens Stock Exchange. Appl. Financ. Econ. 11, 395. DOI .

    Article  Google Scholar 

  • Preminger, D.G., Walton, S.R.: 2006, Modeling solar spectral irradiance and total magnetic flux using sunspot areas. Solar Phys. 235, 387. DOI .

    Article  ADS  Google Scholar 

  • Price, C.P., Prichard, D., Hogenson, E.A.: 1992, Do the sunspot numbers form a chaotic set. J. Geophys. Res. 97, 113. DOI .

    Article  Google Scholar 

  • Qin, Z.: 1994, A fractal study on sunspot relative number. Chin. Astron. Astrophys. 18, 313. DOI .

    Article  Google Scholar 

  • Qin, Z.: 1996, A nonlinear prediction of the smoothed monthly sunspot numbers. Astron. Astrophys. 310, 646.

    Google Scholar 

  • Rempel, M.: 2011, Subsurface magnetic field and flow structure of simulated sunspots. Astrophys. J. 740, 15. DOI .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., et al.: 2012, Solar Phys. 275, 207. DOI .

    Article  ADS  Google Scholar 

  • Shenshi, G., Zhiqian, W., Jitai, C.: 1999, The fractal research and predicating on the times series of sunspot relative number. Appl. Math. Mech. 20, 84. DOI .

    Article  MATH  Google Scholar 

  • Solanki, S.K.: 2003, Sunspots: an overview. Astron. Astrophys. Rev. 11, 153. DOI .

    Article  ADS  Google Scholar 

  • Uritsky, V.M., Davila, J.M.: 2012, Multiscale dynamics of solar magnetic structures. Astrophys. J. 748, 60. DOI .

    Article  ADS  Google Scholar 

  • Vertyagina, Y., Kozlovskiy, A.: 2013, Study of solar activity from the position of multifractal analysis. New Astron. 23, 36. DOI .

    Article  ADS  Google Scholar 

  • Watari, S.: 1995, Fractal dimensions of solar activity. Solar Phys. 158, 365.

    ADS  Google Scholar 

  • Weitz, D.A., Huang, J.S., Lin, M.Y., Sung, J.: 1985, Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids. Phys. Rev. Lett. 54, 1416. DOI .

    Article  ADS  Google Scholar 

  • Yan, X.L., Qu, Z.Q.: 2007, Rapid rotation of a sunspot associated with flares. Astron. Astrophys. 468, 1083. DOI .

    Article  ADS  Google Scholar 

  • Yan, X.L., Qu, Z.Q., Xu, C.L., Xue, Z.K., Kong, D.F.: 2009, The causality between the rapid rotation of a sunspot and an X3.4 flare. Res. Astron. Astrophys. 9, 596. DOI .

    Article  ADS  Google Scholar 

  • Zelenyi, L.M., Milovanov, A.V.: 1991, Fractal properties of sunspots. Sov. Astron. Lett. 17, 425.

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for very valuable comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Haque.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumar, B., Haque, S. & Hrudey, W. Fractal Dimensions of Umbral and Penumbral Regions of Sunspots. Sol Phys 292, 170 (2017). https://doi.org/10.1007/s11207-017-1184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1184-2

Keywords

Navigation