Skip to main content
Log in

Toroidal Flux Ropes with Elliptical Cross Sections and Their Magnetic Helicity

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Axially symmetric constant-alpha force-free magnetic fields in toroidal flux ropes with elliptical cross sections are constructed in order to investigate how their alphas and magnetic helicities depend on parameters of the flux ropes. Magnetic configurations are found numerically using a general solution of a constant-alpha force-free field with an axial symmetry in cylindrical coordinates for a wide range of oblatenesses and aspect ratios. Resulting alphas and magnetic helicities are approximated by polynomial expansions in parameters related to oblateness and aspect ratio. These approximations hold for toroidal as well as cylindrical flux ropes with an accuracy better than or of about 1%. Using these formulae, we calculate relative helicities per unit length of two (probably very oblate) magnetic clouds and show that they are very sensitive to the assumed magnetic cloud shapes (circular versus elliptical cross sections).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  • Berger, M.A.: 1984, Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophys. Astrophys. Fluid Dyn. 30, 79. DOI .

    Article  ADS  Google Scholar 

  • Berger, M.A.: 1999, Magnetic helicity in space physics. In: Brown, M.R., Canfield, R.C., Pevtsov, A.A. (eds.) Magnetic Helicity in Space and Laboratory Plasmas, Geophys. Monogr. Ser. 111, AGU, Washington, 1.

    Chapter  Google Scholar 

  • Berger, M.A., Field, G.B.: 1984, The topological properties of magnetic helicity. J. Fluid Mech. 147, 133. DOI .

    Article  ADS  MathSciNet  Google Scholar 

  • Burlaga, L.F.: 1988, Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 93, 7217. DOI .

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Lepping, R.P., Jones, J.A.: 1990, Global configuration of a magnetic cloud. In: Russell, C.T., Priest, E.R., Lee, L.C. (eds.) Physics of Magnetic Flux Ropes, Geophys. Monogr. Ser. 58, AGU, Washington, 373. DOI .

    Chapter  Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673. DOI .

    Article  ADS  Google Scholar 

  • Cap, F., Khalil, S.M.: 1989, Eigenvalues of relaxed axisymmetric toroidal plasmas of arbitrary aspect ratio and arbitrary cross-section. Nucl. Fusion 29, 1166.

    Article  Google Scholar 

  • Cargill, P.J., Chen, J., Spicer, D.S., Zalesak, S.T.: 1995, Geometry of interplanetary magnetic clouds. Geophys. Res. Lett. 22, 647. DOI .

    Article  ADS  Google Scholar 

  • Dasso, S., Mandrini, C.H., Démoulin, P., Farrugia, C.J.: 2003, Magnetic helicity analysis of an interplanetary twisted flux tube. J. Geophys. Res. 108, 1362 DOI .

    Article  Google Scholar 

  • Goldstein, H.: 1983, On the field configuration in magnetic clouds. In: Neugebauer, M. (ed.) Solar Wind Five, NASA Conf. Publ. CP-2280, NASA, Washington, 731.

    Google Scholar 

  • Hidalgo, M.A., Nieves-Chinchilla, T.: 2012, A global magnetic topology model for magnetic clouds. I. Astrophys. J. 748, 109. DOI .

    Article  ADS  MATH  Google Scholar 

  • Hidalgo, M.A., Cid, C., Viñas, A.F., Sequeiros, J.: 2002, A non-force-free approach to the topology of magnetic clouds in the solar wind. J. Geophys. Res. 107, 1002 DOI .

    Article  Google Scholar 

  • Hu, Q., Qiu, J., Krucker, S.: 2015, Magnetic field line lengths inside interplanetary magnetic flux ropes. J. Geophys. Res. 120, 5266. DOI .

    Article  Google Scholar 

  • Hu, Q., Sonnerup, B.U.Ö.: 2002, Reconstruction of magnetic clouds in the solar wind: orientations and configurations. J. Geophys. Res. 107, 1142 DOI .

    Article  Google Scholar 

  • Hu, Q., Qiu, J., Dasgupta, B., Khare, A., Webb, G.M.: 2014, Structures of interplanetary magnetic flux ropes and comparison with their solar sources. Astrophys. J. 793, 53. DOI .

    Article  ADS  Google Scholar 

  • Janvier, M., Démoulin, P., Dasso, S.: 2013, Global axis shape of magnetic clouds deduced from the distribution of their local axis orientation. Astron. Astrophys. 556, A50. DOI .

    Article  ADS  Google Scholar 

  • Janvier, M., Démoulin, P., Dasso, S.: 2014a, Are there different populations of flux ropes in the solar wind? Solar Phys. 289, 2633. DOI .

    Article  ADS  Google Scholar 

  • Janvier, M., Démoulin, P., Dasso, S.: 2014b, In situ properties of small and large flux ropes in the solar wind. J. Geophys. Res. 119, 7088. DOI .

    Article  Google Scholar 

  • Klein, L.W., Burlaga, L.F.: 1982, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 87, 613. DOI .

    Article  ADS  Google Scholar 

  • Krimigis, S., Sarris, E., Armstrong, T.: 1976, Evidence for closed magnetic loop structures in the interplanetary medium (abstract). Eos Trans. AGU 57, 304.

    Google Scholar 

  • Leamon, R.J., Canfield, R.C., Jones, S.L., Lambkin, K., Lundberg, B.J., Pevtsov, A.A.: 2004, Helicity of magnetic clouds and their associated active regions. J. Geophys. Res. 109, A05106. DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Jones, J.A., Burlaga, L.F.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95, 11957. DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Wu, C.-C., Berdichevsky, D.B.: 2015, Yearly comparison of magnetic cloud parameters, sunspot number, and interplanetary quantities for the first 18 years of the Wind mission. Solar Phys. 290, 553. DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.B., Szabo, A., Arqueros, C., Lazarus, A.J.: 2003, Profile of an average magnetic cloud at 1 AU for the quiet solar phase: Wind observations. Solar Phys. 212, 425. DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, A.J., Quivers, A.J.: 2006, A summary of Wind magnetic clouds for years 1995 – 2003: model-fitted parameters, associated errors and classifications. Ann. Geophys. 24, 215. DOI .

    Article  ADS  Google Scholar 

  • Lundquist, S.: 1950, Magnetohydrostatic fields. Ark. Fys. 2, 361.

    MathSciNet  MATH  Google Scholar 

  • Marubashi, K.: 1986, Structure of the interplanetary magnetic clouds and their solar origins. Adv. Space Res. 6, (6)335. DOI .

    Article  ADS  Google Scholar 

  • Marubashi, K.: 1997, Interplanetary magnetic flux ropes and solar filaments. In: Crooker, N., Joselyn, J., Feyman, J. (eds.) Coronal Mass Ejections, Geophys. Monogr. Ser. 99, AGU, Washington, 147.

    Google Scholar 

  • Moldwin, M.B., Hughes, W.J.: 1991, Plasmoids as magnetic flux ropes. J. Geophys. Res. 96, 14051. DOI .

    Article  ADS  Google Scholar 

  • Mulligan, T., Russell, C.T.: 2001, Multispacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: cylindrically symmetric versus nonsymmetric topologies. J. Geophys. Res. 106, 10581. DOI .

    Article  ADS  Google Scholar 

  • Pevtsov, A.A., Canfield, R.C.: 2001, Solar magnetic fields and geomagnetic events. J. Geophys. Res. 106, 25191. DOI .

    Article  ADS  Google Scholar 

  • Press, V.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: 2002, Numerical Recipes in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, New York.

    MATH  Google Scholar 

  • Riley, P., Crooker, N.U.: 2004, Kinematic treatment of coronal mass ejection evolution in the solar wind. Astrophys. J. 600, 1035. DOI .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Lionello, R., Mikic, Z., Odstrcil, D., Hidalgo, M.A., Cid, C., Hu, Q., Lepping, R.P., Rees, A.: 2004, Fitting flux ropes to a global MHD solution: a comparison of techniques. J. Atmos. Solar-Terr. Phys. 66, 1321. DOI .

    Article  ADS  Google Scholar 

  • Romashets, E., Vandas, M., Poedts, S.: 2010, Modeling of local magnetic field enhancements within solar flux ropes. Solar Phys. 261, 271. DOI .

    Article  ADS  Google Scholar 

  • Russell, C.T., Mulligan, T.: 2002, The true dimensions of interplanetary coronal mass ejections. Adv. Space Res. 29, 3, 301. DOI .

    Google Scholar 

  • Shimazu, H., Marubashi, K.: 2000, New method for detecting interplanetary flux ropes. J. Geophys. Res. 105, 2365. DOI .

    Article  ADS  Google Scholar 

  • Song, H.Q., Chen, Y., Zhang, J., Cheng, X., Wang, B., Hu, Q., Li, G., Wang, Y.M.: 2015, Evidence of the solar EUV hot channel as a magnetic flux rope from remote-sensing and in situ observations. Astrophys. J. Lett. 808, L15. DOI .

    Article  ADS  Google Scholar 

  • Tsuji, Y.: 1991, Force-free magnetic field in the axisymmetric torus of arbitrary aspect ratio. Phys. Fluids, B 3, 3379. DOI .

    Article  ADS  Google Scholar 

  • Vandas, M., Romashets, E.P.: 2003, A force-free field with constant alpha in an oblate cylinder: A generalization of the Lundquist solution. Astron. Astrophys. 398, 801. DOI .

    Article  ADS  Google Scholar 

  • Vandas, M., Romashets, E.: 2015, Comparative study of a constant-alpha force-free field and its approximations in an ideal toroid. Astron. Astrophys. 580, A123. DOI .

    Article  ADS  Google Scholar 

  • Vandas, M., Romashets, E.P., Geranios, A.: 2010, How do fits of simulated magnetic clouds correspond to their real shapes in 3-D? Ann. Geophys. 28, 1581. DOI .

    Article  ADS  Google Scholar 

  • Vandas, M., Romashets, E., Geranios, A.: 2015, Modeling of magnetic cloud expansion. Astron. Astrophys. 583, A78. DOI .

    Article  ADS  Google Scholar 

  • Vandas, M., Romashets, E.P., Watari, S.: 2005, Magnetic clouds of oblate shapes. Planet. Space Sci. 53, 19. DOI .

    Article  ADS  Google Scholar 

  • Vandas, M., Fischer, S., Dryer, M., Smith, Z., Detman, T.: 1995, Simulation of magnetic cloud propagation in the inner heliosphere in two-dimensions, 1, A loop perpendicular to the ecliptic plane. J. Geophys. Res. 100, 12285. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of data from OMNIWeb and the PIs who provided them. This work was supported by projects 14-19376S and 17-06065S from GA ČR and by the AV ČR grant RVO:67985815.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vandas.

Ethics declarations

Disclosure of Potential Conflicts of Interests

The authors declare that they have no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandas, M., Romashets, E. Toroidal Flux Ropes with Elliptical Cross Sections and Their Magnetic Helicity. Sol Phys 292, 129 (2017). https://doi.org/10.1007/s11207-017-1149-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1149-5

Keywords

Navigation