Skip to main content
Log in

Non-parametric Data Analysis of Low-latitude Auroras and Naked-eye Sunspots in the Medieval Epoch

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We have studied solar activity by analyzing naked-eye sunspot observations and aurorae borealis observed at latitudes below \(45^{\circ}\). We focused on the medieval epoch by considering the non-telescopic observations of sunspots from AD 974 to 1278 and aurorae borealis from AD 965 to 1273 that are reported in several Far East historical sources, primarily in China and Korea. After setting selection rules, we analyzed the distribution of these individual events following the months of the Gregorian calendar. In December, an unusual peak is observed with data recorded in both China and Japan, but not within Korean data.

In extreme conditions, where the collection of events is reduced and discontinuous in some temporal intervals, we used the non-parametric kernel method. We opted for the plug-in approach of Sheather and Jones instead of cross-validation techniques to estimate the probability density functions (pdf) of the events. We obtained optimized bandwidths of 13.29 years for sunspots and 9.06 years for auroras, and 95% confidence intervals. The pdf curves exhibit multiple peaks occurring at quasi-periodic times with a very high positive correlation, \(r_{\mathrm{tt}} = 0.9958\), between the dates of occurrence of the nine extrema of sunspots and auroras. Furthermore, these extrema enabled us to evaluate mean periods at two standard deviations, \(66.77 \pm 7.25~\mbox{years}\) for sunspots and \(65.06 \pm 9.36~\mbox{years}\) for auroras. The accuracy of the average periods, 62.00 years for sunspots and 61.80 years for auroras, was improved by the use of the power spectrum method. The percentage of the total number of non-observed sunspots, using redundant data, from AD 1151 to 1275 was estimated to be greater than or equal to 78%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Notes

  1. All dates in this article are given in decimal notation.

  2. Start of the campaign in China in AD 1211.

  3. Start of the campaign in Korea in AD 1231.

  4. \(|t ^{(\mathrm{a})}-t^{(\mathrm{s})}|/(1273-974)\).

  5. In fact, due to the rotation of the Sun, an observer on Earth could never continuously observe a sunspot during a period greater than \(\tau_{\mathrm{max}}=1.5\,T_{\mathrm{s}}\approx40~\mbox{days}\), where \(T_{s}\) is the synodic solar rotation period (Nagovitsyn, 2001).

  6. In principle, we have \(\overline{n}_{0}=\widetilde{n}-N\), where \(\widetilde{n}\) would be the number of observed sunspots in days without a cloud cover, measured for example with a telescope attached to a satellite away from the Earth atmosphere; throughout a year, this number is not necessarily constant \(\widetilde{n}=\widetilde{n}(t)\).

  7. As determined with more observations, the mean period of auroras is more significant than that estimated for sunspots. Thus, the relative error used is \(|\overline{T}_{2}-\overline{T}_{1}|/ \overline{T}_{1}\).

References

  • Agnihotri, R., Dutta, K., Bhushan, R., Somayajulu, B.L.K.: 2002, Evidence for solar forcing on the Indian monsoon during the last millennium. Earth Planet. Sci. Lett. 198, 521. DOI .

    Article  ADS  Google Scholar 

  • Anderson, D.R., Sweeney, D.J., Williams, T.A.: 2008, Essentials of Statistics for Business and Economics, 5th edn. Cengage Learning, Thomson South-Western 113.

    Google Scholar 

  • Bard, E., Raisbeck, G.M., Yiou, F., Jouzel, J.: 1997, Solar modulation of cosmogenic nuclide production over the last millennium: Comparison between 14C and 10Be records. Earth Planet. Sci. Lett. 150, 453. DOI .

    Article  ADS  Google Scholar 

  • Bard, E., Raisbeck, G.M., Yiou, F., Jouzel, J.: 2000, Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B 52, 985. DOI .

    Article  ADS  Google Scholar 

  • Basurah, H.M.: 2006, Records of aurora in the Islamic chronicles during 9th –  16th centuries. J. Atmos. Solar-Terr. Phys. 68, 937. DOI .

    Article  ADS  Google Scholar 

  • Böhning, D.: 2010, Some general comparative points on Chao’s and Zelterman’s estimators of the population size. Scand. J. Stat. 37, 221. DOI .

    Article  MathSciNet  MATH  Google Scholar 

  • Bowman, A.: 1984, An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71, 352. DOI .

    MathSciNet  Google Scholar 

  • Brekke, A.: 2013, Physics of the Upper Polar Atmosphere, 2nd edn. Springer, Heidelberg.

    Book  Google Scholar 

  • Chambers, D.P., Merrifield, M.A., Nerem, R.S.: 2012, Is there a 60-year oscillation in global mean sea level? Geophys. Res. Lett. 39, L18607. DOI .

    Article  ADS  Google Scholar 

  • Charvátová-Jakubcová, I., Střeštík, J., Křivský, L.: 1988, The periodicity of aurorae in the years 1001 – 1900. Stud. Geophys. Geod. 32, 70. DOI .

    Article  Google Scholar 

  • Delworth, T.L., Mann, M.E.: 2000, Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dyn. 16, 661. DOI .

    Article  Google Scholar 

  • d’Orgeville, M., Peltier, W.R.: 2007, On the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation: Might they be related? Geophys. Res. Lett. 34, L23705. DOI .

    ADS  Google Scholar 

  • Friis-Christensen, E., Svensmark, H.: 1998, What do we really know about the Sun–climate connection? Adv. Space Res. 20, 913. DOI .

    Article  ADS  Google Scholar 

  • Hameed, S., Gong, G.: 1991, Influence of atmospheric dust on non-telescopic sunspot observations. Solar Phys. 132, 409. DOI .

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 2010, The solar cycle. Living Rev. Solar Phys. 7, 1. DOI .

    Article  ADS  Google Scholar 

  • Hayakawa, H., Tamazawa, H., Kawamura, A.D., Isobe, H.: 2015, Records of sunspot and aurora during CE 960 – 1279 in the Chinese chronicle of the Sòng dynasty. Earth Planets Space 67, 82. DOI .

    Article  ADS  Google Scholar 

  • Jirikowic, J.L., Damon, P.E.: 1994, The medieval solar-activity maximum. Clim. Change 26(2–3), 309. DOI .

    Article  Google Scholar 

  • Keller, H.U., Friedli, T.K.: 1992, Visibility limit of naked-eye sunspots. Q. J. Roy. Astron. Soc. 33, 83.

    ADS  Google Scholar 

  • Kokonendji, C.C., Puig, P.: 2016, Estimations non-paramétriques du nombre de zéros en dénombrement tronqué et Applications. Plenary conference, LaMOS University of Bejaia, Bejaia.

  • Kondrashov, D., Feliks, Y., Ghil, M.: 2005, Oscillatory modes extended Nile River records (A.D. 622 – 1922). Geophys. Res. Lett. 32, L10702. DOI .

    Article  ADS  Google Scholar 

  • Lee, E.H., Ahn, Y.S., Yang, H.J., Chen, K.Y.: 2004, The sunspot and auroral activity cycle derived from Korean historical records of the 11th – 18th century. Solar Phys. 224, 373. DOI .

    Article  ADS  Google Scholar 

  • Lüdecke, H.-J., Hempelmann, A., Weiss, C.O.: 2013, Multi-periodic climate dynamics: Spectral analysis of long-term instrumental and proxy temperature records. Clim. Past 9, 447. DOI .

    Article  Google Scholar 

  • Marron, J.S.: 1987, A comparison of cross-validation techniques in density estimation. Ann. Stat. 15, 152.

    Article  MathSciNet  MATH  Google Scholar 

  • Mazzarella, A.: 2007, The 60-year solar modulation of global air temperature: The Earth’s rotation and atmospheric circulation connection. Theor. Appl. Climatol. 88, 193. DOI .

    Article  ADS  Google Scholar 

  • McInnes, B., Robertson, K.A.: 1960, Latitude distribution and seasonal variation of aurora over the British Isles during 1957 and 1958. J. Atmos. Terr. Phys. 19, 115. DOI .

    Article  ADS  Google Scholar 

  • Minobe, S.: 1997, A 50 – 70 year oscillation over the North Pacific and North America. Geophys. Res. Lett. 24, 683. DOI .

    Article  ADS  Google Scholar 

  • Miyahara, H.: 2010, Variations of solar activity and climate during the past 1200 years. J. Geogr. 119, 510. DOI .

    Article  Google Scholar 

  • Mossman, J.E.: 1989, A comprehensive search for sunspots without the aid of a telescope, 1981 – 1982. Q. J. Roy. Astron. Soc. 30, 59.

    ADS  Google Scholar 

  • Nagovitsyn, Y.A.: 2001, Solar activity during the last two millennia: Solar patrol in ancient and medieval China. Geomagn. Aeron. 41, 680.

    Google Scholar 

  • Nakazawa, Y., Okada, T., Shiokawa, K.: 2004, Understanding the “SEKKI” phenomena in Japanese historical literatures based on the modern science of low-latitude aurora. Earth Planets Space 56, e41. DOI .

    Article  ADS  Google Scholar 

  • Ogurtsov, M.G., Nagovitsyn, Y.A., Kocharov, G.E., Jungner, H.: 2002, Long-period cycles of the sun’s activity recorded in direct solar data and proxies. Solar Phys. 211, 371. DOI .

    Article  ADS  Google Scholar 

  • Peel, M.C., Finlayson, B.L., McMahon, T.A.: 2007, Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 4, 439.

    Article  ADS  Google Scholar 

  • Rigozo, N.R., da Silva, H.E., Nordemann, D.J.R., Echer, E., de Souza Echer, M.P., Prestes, A.: 2008, The Medieval and Modern Maximum solar activity imprints in tree ring data from Chile and stable isotope records from Antarctica and Peru. J. Atmos. Solar-Terr. Phys. 70, 1012. DOI .

    Article  ADS  Google Scholar 

  • Ruzmaikin, A., Feynman, J., Yung, Y.L.: 2006, Is solar variability reflected in the Nile River? J. Geophys. Res. 111, D21114. DOI .

    Article  ADS  Google Scholar 

  • Scafetta, N.: 2010, Empirical evidence for a celestial origin of the climate oscillations and its implications. J. Atmos. Solar-Terr. Phys. 72, 951. DOI .

    Article  ADS  Google Scholar 

  • Scafetta, N.: 2012, A shared frequency set between the historical mid-latitude aurora records and the global surface temperature. J. Atmos. Solar-Terr. Phys. 74, 145. DOI .

    Article  ADS  Google Scholar 

  • Schröder, W.: 1965, Seasonal variation of aurora. J. Geophys. Res. 70, 4387. DOI .

    Article  ADS  Google Scholar 

  • Schröder, W.: 2011, On the frequency of auroras over Germany. Geofís. Int. 50, 439.

    Google Scholar 

  • Sheather, S.J., Jones, M.C.: 1991, A reliable data-based bandwidth selection method for kernel density estimation. J. Roy. Stat. Soc. B 53, 683.

    MathSciNet  MATH  Google Scholar 

  • Silverman, B.W.: 1986, Density Estimation for Statistics and Data Analysis, Chapman & Hall, London.

    Book  MATH  Google Scholar 

  • Silverman, S.M.: 1992, Secular variation of the aurora for the past 500 years. Rev. Geophys. 30, 333. DOI .

    Article  ADS  Google Scholar 

  • Silverman, S.M.: 1951, Silverman catalog of ancient auroral observations, 666 BCE to 1951, http://spdf.gsfc.nasa.gov/pub/data/aaa_historical_aurora/cat_ancient_auroral_obs_666bce_1951/ .

  • Stephenson, F.R.: 1990, Historical evidence concerning the Sun: Interpretation of sunspots records during the telescopic and pretelescopic eras. Phil. Trans. Roy. Soc. London A 330, 499. DOI .

    Article  ADS  Google Scholar 

  • Stoica, P., Moses, R.L.: 1997, Introduction to Spectral Analysis, Prentice Hall, New Jersey.

    MATH  Google Scholar 

  • Usoskin, I.G.: 2013, A history of solar activity over millennia. Living Rev. Solar Phys. 10, 1. DOI .

    Article  ADS  Google Scholar 

  • Usoskin, I.G., Mursula, K.: 2003, Long-term solar cycle evolution: Review of recent developments. Solar Phys. 218, 319. DOI .

    Article  ADS  Google Scholar 

  • Vaquero, J.M., Gallego, M.C., García, J.A.: 2002, A 250-year cycle in naked-eye observations of sunspots. Geophys. Res. Lett. 29, 58. DOI .

    Article  ADS  Google Scholar 

  • Vaquero, J.M., Trigo, R.M.: 2012, A note on solar cycle length during the Medieval Climate Anomaly. Solar Phys. 279, 289. DOI .

    Article  ADS  Google Scholar 

  • Vaquero, J.M., Vázquez, M.: 2009, The Sun Recorded Through History, Springer, Berlin. DOI .

    Google Scholar 

  • Veretenenko, S.V., Ogurtsov, M.G.: 2012a, Study of spatial and temporal structure of long-term effects of solar activity and cosmic ray variations on the lower atmosphere circulation. Geomagn. Aeron. 52, 591. DOI .

    Article  ADS  Google Scholar 

  • Veretenenko, S.V., Ogurtsov, M.G.: 2012b, The polar vortex evolution as a possible reason for the temporal variability of solar activity effects on the lower atmosphere circulation. In: Troyan, V.N., Semenov, V.S., Kubyshkina, M.V. (eds.) Problems of Geocosmos; Proc. of the 9th International Conference, St. Petersburg, 416.

    Google Scholar 

  • Wade, P.: 1994, Naked-eye sunspots, 1980 – 1992. J. Br. Astron. Assoc. 104, 86.

    ADS  Google Scholar 

  • Willis, D.M., Easterbrook, M.G., Stephenson, F.R.: 1980, Seasonal variation of oriental sunspot sightings. Nature 287, 617. DOI .

    Article  ADS  Google Scholar 

  • Willis, D.M., Doidge, C.M., Hapgood, M.A., Yau, K.K.C., Stephenson, F.R.: 1988, Seasonal and secular variations of the oriental sunspot sightings. In: Stephenson, F.R., Wolfendale, A.W. (eds.) Secular Solar and Geomagnetic Variations in the Last 10,000 Years, Kluwer Academic, Dordrecht 187. DOI .

    Chapter  Google Scholar 

  • Wittmann, A.D., Xu, Z.T.: 1987, A catalogue of sunspot observations from 165 BC to AD 1684. Astron. Astrophys. Suppl. 70, 83.

    ADS  Google Scholar 

  • Yadava, M.G., Ramesh, R.: 2007, Significant longer-term periodicities in the proxy record of the Indian monsoon rainfall. New Astron. 12, 544. DOI .

    Article  ADS  Google Scholar 

  • Yau, K.K.C., Stephenson, F.R.: 1988, A revised catalogue of Far Eastern observations of sunspots (165 BC to AD 1918). Q. J. Roy. Astron. Soc. 29, 175.

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for valuable comments. We are grateful to Imad Belabbas for fruitful discussions and pertinent remarks that have substantially improved this article. We thank Célestin Kokonendji for valuable discussions and Nadia Haffaf for useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Reda Bekli.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekli, M.R., Zougab, N., Belabbas, A. et al. Non-parametric Data Analysis of Low-latitude Auroras and Naked-eye Sunspots in the Medieval Epoch. Sol Phys 292, 52 (2017). https://doi.org/10.1007/s11207-017-1084-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1084-5

Keywords

Navigation