Skip to main content
Log in

Reconstruction of Solar Extreme Ultraviolet Flux 1740 – 2015

  • Sunspot Number Recalibration
  • Published:
Solar Physics Aims and scope Submit manuscript

An Erratum to this article was published on 05 January 2017

Abstract

Solar extreme ultraviolet (EUV) radiation creates the conducting E-layer of the ionosphere, mainly by photo-ionization of molecular oxygen. Solar heating of the ionosphere creates thermal winds, which by dynamo action induce an electric field driving an electric current having a magnetic effect observable on the ground, as was discovered by G. Graham in 1722. The current rises and falls with the Sun, and thus causes a readily observable diurnal variation of the geomagnetic field, allowing us to deduce the conductivity and thus the EUV flux as far back as reliable magnetic data reach. High-quality data go back to the “Magnetic Crusade” of the 1830s and less reliable, but still usable, data are available for portions of the 100 years before that. J.R. Wolf and, independently, J.-A. Gautier discovered the dependence of the diurnal variation on solar activity, and today we understand and can invert that relationship to construct a reliable record of the EUV flux from the geomagnetic record. We compare that to the \(F_{10.7}\) flux and the sunspot number, and we find that the reconstructed EUV flux reproduces the \(F_{10.7}\) flux with great accuracy. On the other hand, it appears that the Relative Sunspot Number as currently defined is beginning to no longer be a faithful representation of solar magnetic activity, at least as measured by the EUV and related indices. The reconstruction suggests that the EUV flux reaches the same low (but non-zero) value at every sunspot minimum (possibly including Grand Minima), representing an invariant “solar magnetic ground state”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27

Similar content being viewed by others

Notes

  1. If an observer with their instrument sees on any given day \(g\) spot groups with a total of \(f\) single spots, without regard to their sizes, then the relative number for the day becomes \(r = k(10g+f)\).

  2. PC–DOS program at www.leif.org/research/corrgeom.exe .

  3. PC–DOS program at www.leif.org/research/corrgeom.exe .

References

  • Allen, C.W.: 1948, Critical frequencies, sunspots, and the Sun’s ultra-violet radiation. Terr. Magn. Atmos. Electr. 53(4), 433. DOI .

    Article  Google Scholar 

  • Appelton, E.W.: 1947. www.nobelprize.org/nobel_prizes/physics/laureates/1947/appleton-lecture.pdf downloaded 10 March 2016.

  • Beckman, O.: 2001, Anders Celsius. Elementá 84, 4.

    Google Scholar 

  • Bulling, A.: 2013, The SONNE Sunspot Number Network – 35 Years & Counting, 3rd SSN Workshop, www.leif.org/research/SSN/Bulling.pdf downloaded 10 March 2016.

  • Canton, J.: 1759, An attempt to account for the regular diurnal variation of the horizontal magnetic needle; and also for its irregular variation at the time of an aurora borealis. Phil. Trans. 51, 398. DOI .

    Article  Google Scholar 

  • Chapman, S., Bartels, J.: 1940, Wolf’s suggested linear relationship. In: Geomagnetism 1, Clarendon Press, Oxford, 224.

    Google Scholar 

  • Chapman, S., Gupta, J.C., Malin, S.R.C.: 1971, The sunspot cycle influence on the solar and lunar daily geomagnetic variations. Proc. Roy. Soc. London 324(1566), 1. DOI .

    Article  ADS  Google Scholar 

  • Chree, C.: 1913, Some phenomena of sunspots and of terrestrial magnetism at Kew observatory. Phil. Trans. Roy. Soc. London A 212, 75. DOI .

    Article  ADS  Google Scholar 

  • Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2014, Revisiting the sunspot number – a 400–year perspective on the solar cycle. Space Sci. Rev. 186, 35. DOI .

    Article  ADS  Google Scholar 

  • Clilverd, M.A., Clark, T.D.G., Clarke, E., Rishbeth, H.: 1998, Increased magnetic storm activity from 1868 to 1995. J. Atmos. Solar-Terr. Phys. 60, 1047. DOI .

    Article  ADS  Google Scholar 

  • Clilverd, M.A., Clarke, E., Ulich, T., Linthe, J., Rishbeth, H.: 2005, Reconstructing the long-term aa index. J. Geophys. Res. 110, A07205. DOI .

    Article  ADS  Google Scholar 

  • Cnossen, I., Richmond, A.D., Wiltberger, M.: 2012, The dependence of the coupled magnetosphere–ionosphere–thermosphere system on the Earth’s magnetic dipole moment. J. Geophys. Res. 117, A05302. DOI .

    ADS  Google Scholar 

  • Didkovsky, L., Wieman, S.: 2014, Ionospheric total electron contents (tecs) as indicators of solar EUV changes during the last two solar minima. J. Geophys. Res. 119(A), 1. DOI .

    Google Scholar 

  • Dudok de Wit, T., Bruinsma, S., Shibasaki, K.: 2014, Synoptic radio observations as proxies for upper atmosphere modelling. J. Space Weather Space Clim. 4, A06. DOI .

    Article  Google Scholar 

  • Emmert, J.T., McDonald, S.E., Drob, D.P., Meier, R.R., Lean, J.L., Picone, J.M.: 2014, Attribution of interminima changes in the global thermosphere and ionosphere. J. Geophys. Res. 119(A), 6657. DOI .

    Article  Google Scholar 

  • Fouassier, D., Chulliat, A.: 2009, Extending backwards to 1883 the French magnetic hourly data series. Love, J.J. (ed.): Proc. of the XIIIth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition, and Processing, U.S. Geological Survey Open-File Report 2009 – 1226, USGS, Golden, CO, 86.

    Google Scholar 

  • Gautier, J.-A.: 1852, Notice sur quelques recherches récentes, astronomiques et physiques, relative aux apparences que présente le corps du solei. In: Bibliothèque Universelle de Genève, Archives des Sciences Physiques et Naturelles 20, Ferd. Ramboz et Comp., Genève, 177. tinyurl.com/mgs7hqw downloaded 10 March 2016.

    Google Scholar 

  • Graham, G.: 1724, An account of observations made of the variation of the horizontal needle at London, in the latter part of the year 1722, and beginning of 1723. Phil. Trans. 33, 96. DOI .

    Article  Google Scholar 

  • Heaviside, O.: 1902, Telegraphy I Theory. Encyclopedia Britannica, 10th edn., 33, 213.

    Google Scholar 

  • Hjorter, O.P.: 1747, Om Magnet-Nålens åtskillige ändringar etc. Kong. Svensk. Vet. Handl. 8, 27.

    Google Scholar 

  • Hoyt, D.V., Schatten, K.H.: 1998, Group sunspot numbers: a new solar activity reconstruction. Solar Phys. 181, 491. DOI .

    Article  ADS  Google Scholar 

  • Ieda, A., Oyama, S., Vanhamäki, H., Fujii, R., Nakamizo, A., Amm, O., Hori, T., Takeda, M., Ueno, G., Yoshikawa, A., Redmon, R.J., Denig, W.F., Kamide, Y., Nishitani, N.: 2014, Approximate forms of daytime ionospheric conductance. J. Geophys. Res. 119, 10397. DOI .

    Article  Google Scholar 

  • Jackson, A., Jonkers, A.R.T., Walker, M.R.: 2000, Four centuries of geomagnetic secular variation from historical records. Phil. Trans. Roy. Soc. London A 358, 957. DOI .Footnote

    PC–DOS program at www.leif.org/research/corrgeom.exe .

    Article  ADS  Google Scholar 

  • Judge, D.L., McMullin, D.R., Ogawa, H.S., Hovestadt, D., Klecker, B., Hilchenbach, M., Möbius, E., Canfield, L.R., Vest, R.E., Watts, R., Tarrio, C., Kühne, M., Wurz, P.: 1998, First solar EUV irradiances obtained from SOHO by the CELIAS/SEM. Solar Phys. 177, 161. DOI .

    Article  ADS  Google Scholar 

  • Kennelly, A.E.: 1902, On the elevation of the electrically–conducting strata of the Earth’s atmosphere. Elec. World Eng. 39, 473.

    Google Scholar 

  • Koyama, Y., Shinbori, A., Tanaka, Y., Hori, T., Nosé, M., Oimatsu, S.: 2014, An interactive data language software package to calculate ionospheric conductivity by using numerical models. Comput. Phys. Commun. 185, 3398. DOI .

    Article  ADS  Google Scholar 

  • Lamont, J.v.: 1851, Ueber die zehnjährige Periode, welche sich in der Größe der täglichen Bewegung der Magnetnadel darstellt. Ann. Phys. 160(12), 572. DOI .

    Article  Google Scholar 

  • Lean, J.L., Warren, H.P., Mariska, J.T., Bishop, J.: 2003, A new model of solar EUV irradiance variability, 2, Comparisons with empirical models and observations and implications for space weather. J. Geophys. Res. 108(A2), 1059. DOI .

    Article  Google Scholar 

  • Lean, J.L., Emmert, J.T., Picone, J.M., Meier, R.R.: 2011, Global and regional trends in ionospheric total electron content. J. Geophys. Res. 116, A00H04. DOI .

    ADS  Google Scholar 

  • Lefèvre, L., Clette, F.: 2011, A global small sunspot deficit at the base of the index anomalies of solar cycle 23. Astron. Astrophys. 536, L11 DOI .

    Article  ADS  Google Scholar 

  • Lockwood, M., Owens, M.J., Barnard, L.: 2014, Centennial variations in sunspot number, open solar flux, and streamer belt width: 1. Correction of the sunspot number record since 1874. J. Geophys. Res. 119, 5172. DOI .

    Article  Google Scholar 

  • Lockwood, M., Stamper, R., Wild, M.N.: 1999, A doubling of the sun’s coronal magnetic field during the last 100 years. Nature 399, 437. DOI .

    Article  ADS  Google Scholar 

  • Lockwood, M., Whiter, D., Hancock, B., Henwood, R., Ulich, T., Linthe, H.J., Clarke, E., Clilverd, M.: 2006, The Long-Term Drift in Geomagnetic Activity: Calibration of the aa Index Using Data from a Variety of Magnetometer Stations, Rutherford Appleton Laboratory (RAL) Harwell, Oxford, UK. www.eiscat.rl.ac.uk/Members/mike/publications/pdfs/sub/241_Lockwood_aa_correct_S1a.pdf downloaded 10 March 2016.

    Google Scholar 

  • Lockwood, M., Barnard, L., Nevanlinna, H., Owens, M.J., Harrison, R.G., Rouillard, A.P., Davis, C.J.: 2013, Reconstruction of geomagnetic activity and near–Earth interplanetary conditions over the past 167 yr – part 1: a new geomagnetic data composite. Ann. Geophys. 31(11), 1957. DOI .

    Article  ADS  Google Scholar 

  • Loomis, E.: 1870, Comparison of the mean daily range of magnetic declination, with the number of auroras observed each year, and the extent of the black spots on the surface of the Sun. Am. J. Sci. Arts, 2nd Series 50(149), 153.

    Google Scholar 

  • Loomis, E.: 1873, Comparison of the mean daily range of the magnetic declination and the number of auroras observed each year. Am. J. Sci. Arts, 3rd Series 5(28), 245.

    Google Scholar 

  • Love, J.J., Rigler, E.J.: 2014, The magnetic tides of Honolulu. Geophys. J. Int. 197(3), 1335. DOI .

    Article  ADS  Google Scholar 

  • Maeda, K.: 1977, Conductivity and drift in the ionosphere. J. Atmos. Solar-Terr. Phys. 39, 1041. DOI .

    Article  ADS  Google Scholar 

  • MacMillan, S., Droujinina, A.: 2007, Long-term trends in geomagnetic daily variation. Earth Planets Space 59, 391. DOI .

    Article  ADS  Google Scholar 

  • MacMillan, S., Clarke, E.: 2011, Resolving issues concerning Eskdalemuir geomagnetic hourly values. Ann. Geophys. 29, 283. DOI .

    Article  ADS  Google Scholar 

  • Malin, S.R.C.: 1973, Worldwide distribution of geomagnetic tides. Phil. Trans. Roy. Soc. London A 274(1243), 551. DOI .

    Article  ADS  Google Scholar 

  • Malin, S.R.C.: 1996, Geomagnetism at the Royal Observatory, Greenwich. Q. J. Roy. Astron. Soc. 37, 65.

    ADS  Google Scholar 

  • Martini, D., Mursula, K., Orispää, M., Linthe, H.-J.: 2015, Long-term decrease in the response of midlatitude stations to high-speed solar wind streams in 1914 – 2000. J. Geophys. Res. 120, 2662. DOI .

    Article  Google Scholar 

  • Mayaud, P.-N.: 1965, Analyse morphologique de la variabilité jour-à-jour de la variation journalière “régulière” \(S_{R}\) du champ magnétique terrestre, II – Le système de courants \(CM\) (Régions non-polaires). Ann. Géophys. 21, 514.

    Google Scholar 

  • Mayaud, P.-N.: 1967, Calcul préliminaire d’indices Km, Kn, Ks, ou Am, An, et As, mesures de l’activité magnétique à l’échelle mondiale et dans les hémisphères Nord et Sud. Ann. Géophys. 23(4), 585.

    Google Scholar 

  • Mayaud, P.-N.: 1972, The aa indices: a 100-year series characterizing the magnetic activity. J. Geophys. Res. 77(34), 6870. DOI .

    Article  ADS  Google Scholar 

  • Nevanlinna, H.: 2004, Results of the Helsinki Magnetic Observatory 1844 – 1912. Ann. Geophys. 22(5), 1691. DOI .

    Article  ADS  Google Scholar 

  • Nusinov, A.A.: 2006, Ionosphere as a natural detector for investigations of solar EUV flux variations. Adv. Space Res. 37(2), 426. DOI .

    Article  ADS  Google Scholar 

  • Olsen, N.: 1996, A new tool for determining ionospheric currents from magnetic satellite data. Geophys. Res. Lett. 23(24), 3635. DOI .

    Article  ADS  Google Scholar 

  • Rasson, J.L.: 2001, The status of the world-wide network of magnetic observatories, their location and instrumentation. Contrib. Geophys. Geod. 31, 427.

    Google Scholar 

  • Richmond, A.D.: 1995, Ionospheric electrodynamics. In: Volland, H. (ed.) Handbook of Atmospheric Electrodynamics II, 249, CRC Press, Boca Raton, ISBN:978-0849325205.

    Google Scholar 

  • Riley, P., Lionello, R., Linker, J.A., Cliver, E., Balogh, A., Beer, J., Charbonneau, P., Crooker, N., deRosa, M., Lockwood, M., Owens, M., McCracken, K., Usoskin, I., Koutchmy, S.: 2015, Inferring the structure of the solar corona and inner hemisphere during the maunder minimum using global thermodynamic magnetohydrodynamic simulations. Astrophys. J. 802, 105. DOI .

    Article  ADS  Google Scholar 

  • Sabine, E.: 1852, On periodical laws discoverable in the mean effects of the larger magnetic disturbances – No. II. Phil. Trans. Roy. Soc. London 142, 103. DOI .

    Article  Google Scholar 

  • Samson, J.A.R., Gardner, J.L.: 1975, On the ionization potential of molecular oxygen. Can. J. Phys. 53(19), 1948. DOI .

    Article  ADS  Google Scholar 

  • Schering, K.: 1889, Die Entwicklung und der gegenwartige Standpunkt der erdmagnetische Forschung. Geograph. Jahrbuch 13, 171. www.leif.org/research/Schering-1889.pdf downloaded 10 March 2016.

    Google Scholar 

  • Schwabe, S.H.: 1844, Sonnenbeobachtungen im Jahre 1843. Astron. Nachr. 21(495), 233.

    ADS  Google Scholar 

  • Schuster, A.: 1908, The diurnal variation of terrestrial magnetism. Phil. Trans. Roy. Soc. London A 208, 163. DOI .

    Article  ADS  MATH  Google Scholar 

  • Shibasaki, K., Ishiguro, M., Enome, S.: 1979, Solar radio data acquisition and communication system (sordacs) of Toyokawa Observatory. Proc. Res. Inst. Atmos. Nagoya Univ. 26, 117.

    Google Scholar 

  • Snow, M., Weber, M., Machol, J., Viereck, R., Richard, E.: 2014, Comparison of magnesium II core-to-wing ratio observations during solar minimum 23/24. J. Space Weather Space Clim. 4, A04. DOI .

    Article  Google Scholar 

  • Stewart, B.: 1882, Hypothetical views regarding the connexion between the state of the Sun and terrestrial magnetism. Encyclopedia Britannica (9th ed.) 16, 181.

    Google Scholar 

  • Svalgaard, L.: 2010, Sixty+ years of solar microwave flux. In: SHINE Conf. 2010. www.leif.org/research/shine-2010-Microwave-Flux.pdf downloaded 10 March 2016.

    Google Scholar 

  • Svalgaard, L.: 2014, Correction of errors in scale values for magnetic elements for Helsinki. Ann. Geophys. 32, 633. DOI .

    Article  ADS  Google Scholar 

  • Svalgaard, L.: 2016, Reconstruction of Heliospheric Magnetic Field 1835 – 2015, Solar Phys. (in preparation).

  • Svalgaard, L., Beckman, O.: 2016, Analysis of Hjorter’s observations 1740 – 1747 of diurnal range of declination, Solar Phys. (in preparation).

  • Svalgaard, L., Cagnotti, M., Cortesi, S.: 2016, The effect of sunspot weighting. Solar Phys. (submitted).

  • Svalgaard, L., Cliver, E.W.: 2007, Interhourly variability index of geomagnetic activity and its use in deriving the long-term variation of solar wind speed. J. Geophys. Res. 112(A10). DOI .

  • Svalgaard, L., Cliver, E.W., Le Sager, P.: 2004, IHV: a new geomagnetic index. Adv. Space Res. 34(2), 436.

    Article  ADS  Google Scholar 

  • Svalgaard, L., Hudson, H.S.: 2010, The solar microwave flux and the sunspot number. In: Cranmer, S.R., Hoeksema, J.T., Kohl, J.L. (eds.) SOHO-23: Understanding a Peculiar Solar Minimum CS-428, Astron. Soc. Pacific, San Francisco, 325. ISBN:978-1-58381-736-0.

    Google Scholar 

  • Svalgaard, L., Schatten, K.H.: 2016, Reconstruction of the sunspot group number: the backbone method. Solar Phys. DOI .

    Google Scholar 

  • Tapping, K.F.: 1987, Recent solar radio astronomy at centimeter wavelengths: the temporal variability of the 10.7-cm flux. J. Geophys. Res. 92(D1), 829. DOI .

    Article  ADS  Google Scholar 

  • Tapping, K.F.: 2013, The 10.7 cm solar radio flux (\(F_{10.7}\)). Space Weather 11, 394. DOI .

    Article  ADS  Google Scholar 

  • Takeda, M.: 1991, Role of Hall conductivity in the ionospheric dynamo. J. Geophys. Res. 96(A6), 9755. DOI .

    Article  ADS  Google Scholar 

  • Takeda, M.: 2013, Contribution of wind, conductivity, and geomagnetic main field to the variation in the geomagnetic Sq field. J. Geophys. Res. 118, 4516. DOI .

    Article  Google Scholar 

  • Vestine, E.H., LaPorte, L., Lange, I., Scott, W.E.: 1947, The Geomagnetic Field, Its Description and Analysis, Publ. Carnegie Inst. Washington, Washington, DC, 580.

    Google Scholar 

  • Waldmeier, M.: 1948, Jahre Sonnenfleckenstatistik. Astron. Mittl. Eidg. Sternw. Zürich 16(152), 100. 1.

    Google Scholar 

  • Waldmeier, M.: 1971, An objective calibration of the scale of sunspot-numbers. Astron. Mitt. Eidgenöss. Sternwarte Zür. 304, 1.

    ADS  Google Scholar 

  • Wasserfall, K.F.: 1948, Discussion of data for magnetic declination at Oslo, 1843 – 1930, and before 1843. Terr. Magn. Atmos. Electr. 53(3), 279. DOI .

    Article  Google Scholar 

  • Wieman, S.R., Didkovsky, L.V., Judge, D.L.: 2014, Resolving differences in absolute irradiance measurements between the soho/celias/sem and the sdo/eve. Solar Phys. 289, 2907. DOI .

    Article  ADS  Google Scholar 

  • Wolf, J.R.: 1852a, Entdeckung des Zusammenhanges zwischen den Declinationsvariationen der Magnetnadel und den Sonnenflecken. Mitth. naturforsch. Gesell. Bern 224 – 264 245, 179.

    Google Scholar 

  • Wolf, J.R.: 1852b, Vergleichung der Sonnenfleckenperiode mit der Periode der magnetische Variationen. Mitth. der naturforsch. Gesell. Bern 224 – 264 255, 249.

    Google Scholar 

  • Wolf, J.R.: 1857, Beitrag zur Geschichte der Entdeckung des Zusammenhanges zwischen Erdmagnetismus und Sonnenflecken. Mitth. über die Sonnenflecken. III, 27.

    ADS  Google Scholar 

  • Wolf, J.R.: 1859, Über die Möglichkeit aus den Sonnenflecken–Relativzahlen die erdmagnetische Declinationsvariationen vorauszuberechnen. Mitth. über die Sonnenflecken. IX, 207.

    Google Scholar 

  • Wolf, J.R.: 1872, Beobachtungen der Sonnenflecken im Jahre 1871, sowie Berechnung der Relativzahlen und Variationen dieses und Neu-Berechnung derjenigen des vorhergehenden Jahres. Mitth. über die Sonnenflecken. XXX, 381.

    Google Scholar 

  • Wolfer, A.: 1907, Die Haufigkeit und heliographische Verteilung der Sonnenflecken im Jahre 1906. Astron. Mitt. XCVIII, 252.

    Google Scholar 

  • Woods, T.N., Eparvier, F.G., Bailey, S.M., Chamberlin, P.C., Lean, J.L., Rottman, G.J., Solomon, S.C., Tobiska, W.K., Woodraska, D.L.: 2005, The solar EUV experiment (SEE): mission overview and first results. J. Geophys. Res. 110, A01312. DOI .

    Article  ADS  Google Scholar 

  • Yamazaki, Y., Kosch, M.J.: 2014, Geomagnetic lunar and solar daily variations during the last 100 years. J. Geophys. Res. 119A, 1. DOI .

    Google Scholar 

  • Young, C.A.: 1881, The Sun, D. Appleton, New York, 182.

    Google Scholar 

Download references

Acknowledgments

We acknowledge the use of data from the following sources: i) CELIAS/SEM experiment on the Solar and Heliospheric Observatory (SOHO) spacecraft, a joint European Space Agency (ESA), United States National Aeronautics and Space Administration (NASA) mission. ii) The Laboratory for Atmospheric and Space Physics (University of Colorado) TIMED Mission. iii) The Solar Radio Monitoring Programme at the Dominion Radio Astrophysical Observatory operated jointly by National Research Council, Canada and Natural Resources, Canada. iv) The Nobeyama Radio Observatory, NAOJ, Japan. v) World Data Centers for Geomagnetism in Kyoto and Edinburgh. vi) Data collected at geomagnetic observatories by national institutes according to the high standards of magnetic-observatory practice promoted by intermagnet ( www.intermagnet.org ). vii) Data collected by Wolf and Wolfer in Mittheilungen. viii) Yearbooks from the British Geological Survey ( www.geomag.bgs.ac.uk/data_service/data/yearbooks/yearbooks.html ). ix) World Data Center for the production, preservation and dissemination of the international sunspot number ( sidc.be/silso/ ). x) Wasserfall (1948). xi) The SONNE Network sonne.vdsastro.de/index.php?page=gem/res/results.html#provrel . xii) The Bremen composite Mg ii index ( www.iup.uni-bremen.de/gome/gomemgii.html ). xiii) The several World Data Centers for Geomagnetism ( www.wdc.bgs.ac.uk/ , wdc.kugi.kyoto-u.ac.jp/hyplt/index.html , wdciig.res.in/WebUI/Home.aspx ).

We have benefited from comments by Ingrid Cnossen and Ed Cliver. We thank Vladimir Papitashvilli for the corrgeom program to compute the geomagnetic-field elements for the years 1590 – 1995. We thank a referee for insightful comments. This research has made use of NASA’s Astrophysics Data System. Leif Svalgaard thanks Stanford University for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Svalgaard.

Ethics declarations

Statement of Conflict of Interest

The author declares that he has no conflict of interest.

Additional information

Sunspot Number Recalibration

Guest Editors: F. Clette, E.W. Cliver, L. Lefèvre, J.M. Vaquero, and L. Svalgaard

An erratum to this article is available at http://dx.doi.org/10.1007/s11207-016-1047-2.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(XLS 855 kB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svalgaard, L. Reconstruction of Solar Extreme Ultraviolet Flux 1740 – 2015. Sol Phys 291, 2981–3010 (2016). https://doi.org/10.1007/s11207-016-0921-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-016-0921-2

Keywords

Navigation