Skip to main content

Advertisement

Log in

Generation of Weak Double Layers and Low-Frequency Electrostatic Waves in the Solar Wind

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We propose that the mechanism for the generation of weak double layers (WDLs) and low-frequency coherent electrostatic waves, observed by Wind in the solar wind at 1 AU, might be slow and fast ion-acoustic solitons and double layers. The solar wind plasma is modelled as a fluid of hot protons and hot \(\alpha\) particles streaming with respect to protons, and suprathermal electrons having a \(\kappa\)-distribution. The fast ion-acoustic mode is similar to the ion-acoustic mode of a proton–electron plasma and can support only positive-potential solitons. The slow ion-acoustic mode is a new mode that occurs due to the presence of \(\alpha\) particles. This mode can support both positive and negative solitons and double layers. The slow ion-acoustic mode can exist even when the relative streaming, \(U_{0}\), between \(\alpha\) particles and protons is zero, provided that the \(\alpha\) temperature, \(T_{i}\), is not exactly equal to four times the proton temperature, \(T_{p}\). An increase of the \(\kappa\)-index leads to an increase in the critical Mach number, maximum Mach number, and the maximum amplitude of both slow and fast ion-acoustic solitons. The slow ion-acoustic double layer can explain the amplitudes and widths, but not the shapes, of the observed WDLs in the solar wind at 1 AU by Wind spacecraft. The Fourier transform of the slow ion-acoustic solitons/double layers would produce broadband low-frequency electrostatic waves having main peaks between 0.35 kHz to 1.6 kHz, with an electric field in the range of \(E = (0.01\,\mbox{--}\,0.7)~\mbox{mV}\,\mbox{m}^{-1}\), in excellent agreement with the observed low-frequency electrostatic wave activity in the solar wind at 1 AU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Asbridge, J.R., Bame, S.J., Feldman, W.C., Montgomery, M.D.: 1976, Helium and hydrogen velocity differences in the solar wind. J. Geophys. Res. 81, 2719. DOI .

    Article  ADS  Google Scholar 

  • Baboolal, S., Bharuthram, R., Hellberg, M.A.: 1990, Cut-off conditions and existence domains for large-amplitude ion-acoustic solitons and double layers in fluid plasmas. J. Plasma Phys. 44, 1. DOI .

    Article  ADS  Google Scholar 

  • Berthomier, M., Pottelette, R., Malingre, M.: 1998, Solitary waves and weak double layers in a two-electron temperature auroral plasma. J. Geophys. Res. 103, 4261. DOI .

    Article  ADS  Google Scholar 

  • Borovsky, J.E., Gary, S.P.: 2014, How important are the alpha–proton relative drift and the electron heat flux for the proton heating of the solar wind in the inner heliosphere? J. Geophys. Res. 119, 5210. DOI .

    Article  Google Scholar 

  • Bostrom, R., Gustafsson, G., Holback, B., Holmgreen, G., Koskinen, H., Kintner, P.: 1988, Characteristics of solitary waves and weak double layers in the magnetospheric plasma. Phys. Rev. Lett. 61, 82. DOI .

    Article  ADS  Google Scholar 

  • Bounds, S.R., Pfaff, R.F., Knowlton, S.F., Mozer, F.S., Temerin, M.A., Kletzing, C.A.: 1999, Solitary potential structures associated with ion and electron beams near 1 \(r_{e}\) altitude. J. Geophys. Res. 104, 28709. DOI .

    Article  ADS  Google Scholar 

  • Bourouaine, S., Marsch, E., Neubauer, F.M.: 2011, On the relative speed and temperature ratio of solar wind alpha particles and protons: collisions versus wave effects. Astrophys. J. Lett. 728, L3. DOI .

    Article  ADS  Google Scholar 

  • Buti, B.: 1980, Ion-acoustic holes in a two-electron-temperature plasma. Phys. Lett. A 76, 251. DOI .

    Article  ADS  Google Scholar 

  • Cattell, C.A., Dombeck, J., Wygant, J.R., Hudson, M.K., Mozer, F.S., Temerin, M.A., Peterson, W.K., Kletzing, C.A., Russell, C.T., Pfaff, R.F.: 1999, Comparisons of polar satellite observations of solitary wave velocities in the plasma sheet boundary and the high altitude cusp to those in the auroral zone. Geophys. Res. Lett. 26, 425. DOI .

    Article  ADS  Google Scholar 

  • Devanandhan, S., Singh, S.V., Lakhina, G.S., Bharuthram, R.: 2015, Small amplitude electron acoustic solitary waves in a magnetized superthermal plasma. Commun. Nonlinear Sci. Numer. Simul. 22, 1322. DOI .

    Article  MathSciNet  ADS  Google Scholar 

  • Dovner, P.O., Eriksson, A.I., Bostrom, R., Holback, B.: 1980, Freja multiprobe observations of electrostatic solitary structures. Geophys. Res. Lett. 21, 1827. DOI .

    Article  ADS  Google Scholar 

  • Ergun, R.E., Carlson, C.W., McFadden, J.P., Mozer, F.S., Delory, G.T., Peria, W., Chaston, C.C., Temerin, M., Roth, I., Muschietti, L., Elphic, R., Strangeway, R., Pfaff, R., Cattell, C.A., Klumpar, D., Shelley, E., Peterson, W., Moebius, E., Kistler, L.: 1998a, Fast satellite observations of large-amplitude solitary structures. Geophys. Res. Lett. 25, 2041. DOI .

    Article  ADS  Google Scholar 

  • Ergun, R.E., Calrson, C.W., McFadden, J.P., Mozer, F.S., Muschietti, L., Roth, I., Strangeway, R.J.: 1998b, Debye-scale plasma structures associated with magnetic-field-aligned electric fields. Phys. Rev. Lett. 81, 826. DOI .

    Article  ADS  Google Scholar 

  • Franz, J.R., Kintner, P.M., Pickett, J.S.: 1998, Polar observations of coherent electric field structures. Geophys. Res. Lett. 25, 1277. DOI .

    Article  ADS  Google Scholar 

  • Franz, J.R., Kintner, P.M., Pickett, J.S., Chen, L.-J.: 2005, Properties of small-amplitude electron phase-space holes observed by polar. J. Geophys. Res. 110, A09212. DOI .

    ADS  Google Scholar 

  • Ghosh, S.S., Iyengar, A.N.S.: 1997, Anomalous width variations forion acoustic rarefactive solitary waves in a warm ion plasma with two electron temperatures. Phys. Plasmas 5, 3204. DOI .

    Article  ADS  Google Scholar 

  • Ghosh, S.S., Lakhina, G.S.: 2004, Anomalous width variation of rarefactive ion acoustic solitary waves in the context of auroral plasmas. Nonlinear Process. Geophys. 11, 219. DOI .

    Article  ADS  Google Scholar 

  • Ghosh, S.S., Ghosh, K.K., Iyengar, A.N.S.: 1996, Large mach number ion acoustic rarefactive solitary waves for a two electron temperature warm ion plasma. Phys. Plasmas 4, 3939. DOI .

    Article  ADS  Google Scholar 

  • Goldman, M.V., Oppenheim, M.M., Newman, D.L.: 1999, Nonlinear two-stream instabilities as an explanation for the auroral bipolar wave structures. Geophys. Res. Lett. 26, 1821. DOI .

    Article  ADS  Google Scholar 

  • Gurnett, D.A., Anderson, R.R.: 1977, Plasma wave electric fields in the solar wind: initial results from helios 1. J. Geophys. Res. 82, 632. DOI .

    Article  ADS  Google Scholar 

  • Gurnett, D.A., Frank, L.A.: 1978, Ion acoustic waves in the solar wind. J. Geophys. Res. 83, 58. DOI .

    Article  ADS  Google Scholar 

  • Hirshberg, J., Asbridge, J.R., Robbins, D.E.: 1974, The helium component of solar wind velocity streams. J. Geophys. Res. 79, 934. DOI .

    Article  ADS  Google Scholar 

  • Kakad, A.P., Singh, S.V., Reddy, R.V., Lakhina, G.S., Tagare, S.G., Verheest, F.: 2007, Generation mechanism for electron acoustic solitary waves. Phys. Plasmas 14, 052305. DOI .

    Article  ADS  Google Scholar 

  • Kojima, H., Matsumoto, H., Chikuba, S., Horiyama, S., Ashour-Abdalla, M., Anderson, R.R.: 1996, Geotail waveform observations of broadband/narrowband electrostatic noise in the distant tail. J. Geophys. Res. 102, 14439. DOI .

    Article  ADS  Google Scholar 

  • Koskinen, H.E.J., Lundin, R., Holback, B.: 1990, On the plasma environment of solitary waves and weak double layers. J. Geophys. Res. 95, 5921. DOI .

    Article  ADS  Google Scholar 

  • Kurth, W.S., Gurnett, D.A., Frank, L.A.: 1979, High-resolution spectrograms of ion acoustic waves in the solar wind. J. Geophys. Res. 84, 3413. DOI .

    Article  ADS  Google Scholar 

  • Lacombe, C., Salem, C., Mangeney, A., Hubert, D., Perche, C., Bougeret, J.-L., Kellogg, P.J., Bosqued, J.-M.: 2002, Evidence for the interplanetary electric potential? Wind observations of electrostatic fluctuations. Ann. Geophys. 20, 609. DOI .

    Article  ADS  Google Scholar 

  • Lakhina, G.S., Singh, S.V., Kakad, A.P.: 2011, Ion- and electron- acoustic solitons and double layers in multi-component space plasmas. Adv. Space Res. 47, 1558. DOI .

    Article  ADS  Google Scholar 

  • Lakhina, G.S., Singh, S.V., Kakad, A.P.: 2014, Ion acoustic solitons/double layers in two-ion plasma revisited. Phys. Plasmas 21, 062311. DOI .

    Article  ADS  Google Scholar 

  • Lakhina, G.S., Kakad, A.P., Singh, S.V., Verheest, F.: 2008a, Ion- and electron-acoustic solitons in two-electron temperature space plasmas. Phys. Plasmas 15, 062903. DOI .

    Article  ADS  Google Scholar 

  • Lakhina, G.S., Singh, S.V., Kakad, A.P., Verheest, F., Bharuthram, R.: 2008b, Study of nonlinear ion- and electron-acoustic waves in multi-component space plasmas. Nonlinear Process. Geophys. 15, 903. DOI .

    Article  ADS  Google Scholar 

  • Lakhina, G.S., Singh, S.V., Kakad, A.P., Goldstein, M.L., Vinas, A.F., Pickett, J.S.: 2009, A mechanism for electrostatic solitary structures in the Earth’s magnetosheath. J. Geophys. Res. 114, A09212. DOI .

    ADS  Google Scholar 

  • Lakhina, G.S., Singh, S.V., Kakad, A.P., Pickett, J.S.: 2011, Generation of electrostatic solitary waves in the plasma sheet boundary layer. J. Geophys. Res. 116, A10218. DOI .

    Article  ADS  Google Scholar 

  • Livadiotis, G.: 2015, Introduction to special section on origins and properties of kappa distributions: Statistical background and properties of kappa distributions in space plasmas. J. Geophys. Res. 120, 1. DOI .

    Google Scholar 

  • Mace, R.L., Hellberg, M.A.: 1995, A dispersion function for plasmas containing superthermal particles. Phys. Plasmas 2, 2098. DOI .

    Article  ADS  Google Scholar 

  • Maharaj, S.K., Bharuthram, R., Singh, S.V., Lakhina, G.S.: 2012, Existence domains of arbitrary amplitude nonlinear structures in two-electron temperature space plasmas. I. Low-frequency ion-acoustic solitons. Phys. Plasmas 19, 072320. DOI .

    Article  ADS  Google Scholar 

  • Maksimovic, M., Pierrard, V., Riley, P.: 1997, Ulysses electron distributions fitted with kappa functions. Geophys. Res. Lett. 24, 1151. DOI .

    Article  ADS  Google Scholar 

  • Mangeney, A., Salem, C., Lacombe, C., Bougeret, J.-L., Perche, C., Manning, R., Kellogg, P.J., Goetz, K., Monson, S.J., Bosqued, J.-M.: 1999, Wind observations of coherent electrostatic waves in the solar wind. Ann. Geophys. 17, 307. DOI .

    Article  ADS  Google Scholar 

  • Marsch, E., Muhlhauser, K.-H., Rosenbauer, H., Schwenn, R., Neubauer, F.M.: 1982, Solar wind helium ions: Observations of the Helios solar probes between 0.3 and 1 AU. J. Geophys. Res. 87, 35. DOI .

    Article  ADS  Google Scholar 

  • Matsumoto, H., Kojima, H., Miyatake, T., Omura, Y., Okada, Y.M., Nagano, I., Tsutui, M.: 1994, Electrostatic solitary waves (esw) in the magnetotail: Ben wave forms observed by geotail. Geophys. Res. Lett. 21, 2915. DOI .

    Article  ADS  Google Scholar 

  • Mottez, F., Perraut, S., Roux, A., Louarn, P.: 1997, Coherent structures in the magnetotail triggered by counterstreaming electron beams. J. Geophys. Res. 102, 11399. DOI .

    Article  ADS  Google Scholar 

  • Mozer, F.S., Ergun, R.E., Temerin, M., Cattell, C., Dombeck, J., Wygant, J.: 1997, New features of time domain electric field structures in the auroral acceleration region. Phys. Rev. Lett. 79, 1281. DOI .

    Article  ADS  Google Scholar 

  • Omura, Y., Matsumoto, H., Miyake, T., Kojima, H.: 1996, Electron beam instabilities as generation mechanism of electrostatic solitary waves in the magnetotail. J. Geophys. Res. 101, 2685. DOI .

    Article  ADS  Google Scholar 

  • Omura, Y., Kojima, H., Miki, N., Mukai, T., Matsumoto, H., Anderson, R.: 1999, Electrostatic solitary waves carried by diffused electron beams observed by the geotail spacecraft. J. Geophys. Res. 104, 14627. DOI .

    Article  ADS  Google Scholar 

  • Pickett, J.S., Chen, L.-J., Kahler, S.W., Santolik, O., Gurnett, D.A., Tsurutani, B.T., Balogh, A.: 2004, Isolated electrostatic structures observed throughout the cluster orbit: relationship to magnetic field strength. Ann. Geophys. 22, 2515. DOI .

    Article  ADS  Google Scholar 

  • Pickett, J.S., Chen, L.-J., Kahler, S.W., Santolík, O., Goldstein, M.L., Lavraud, B., Décréau, P.M.E., Kessel, R., Lucek, E., Lakhina, G.S., Tsurutani, B.T., Gurnett, D.A., Cornilleau-Wehrlin, N., Fazakerley, A., Réme, H., Balogh, A.: 2005, On the generation of solitary waves observed by cluster in the near-Earth magnetosheath. Nonlinear Process. Geophys. 12, 181. DOI .

    Article  ADS  Google Scholar 

  • Pickett, J.S., Chen, L.-J., Mutel, R.L., Christopher, I.H., Santolik, O., Lakhina, G.S., Singh, S.V., Reddy, R.V., Gurnett, D.A., Tsurutani, B.T., Lucek, E.: 2008, Furthering our understanding of electrostatic solitary waves through cluster multi-spacecraft observations and theory. Adv. Space Res. 41, 1643. DOI .

    Article  Google Scholar 

  • Pierrard, V.: 2012, Solar wind electron transport: interplanetary electric field and heat conduction. Space Sci. Rev. 172, 315. DOI .

    Article  ADS  Google Scholar 

  • Pierrard, V., Lemaire, J.: 1996, Lorentzian ion exosphere model. J. Geophys. Res. 101, 7923. DOI .

    Article  ADS  Google Scholar 

  • Pierrard, V., Maksimovic, M., Lemaire, J.: 1999, Electronic velocity distribution functions from the solar wind to the corona. J. Geophys. Res. 104, 17021. DOI .

    Article  ADS  Google Scholar 

  • Reddy, R.V., Lakhina, G.S.: 1991, Ion acoustic double layers and solitons in auroral plasma. Planet. Space Sci. 39, 1343. DOI .

    Article  ADS  Google Scholar 

  • Reddy, R.V., Lakhina, G.S., Verheest, F.: 1992, Ion-acoustic double layers and solitons in multispecies auroral beam-plasmas. Planet. Space Sci. 40, 1055. DOI .

    Article  ADS  Google Scholar 

  • Rufai, O.R., Bharuthram, R., Singh, S.V., Lakhina, G.S.: 2012, Low frequency solitons and double layers in a magnetized plasma with two temperature electrons. Phys. Plasmas 19, 122308. DOI .

    Article  ADS  Google Scholar 

  • Rufai, O.R., Bharuthram, R., Singh, S.V., Lakhina, G.S.: 2014, Effect of hot ion temperature on obliquely propagating ion-acoustic solitons and double layers in an auroral plasma. Commun. Nonlinear Sci. Numer. Simul. 19, 1338. DOI .

    Article  MathSciNet  ADS  Google Scholar 

  • Sagdeev, R.Z.: 1966, Cooperative phenomena and shock waves in collisionless plasmas. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics 4, Consultants Bureau, New York.

    Google Scholar 

  • Salem, C., Lacombe, C., Mangeney, A., Kellogg, P.J., Bougeret, J.-L.: 2003, Weak double layers in the solar wind and their relation to the interplanetary electric field. In: Velli, M., Bruno, R., Malara, F. (eds.) CP679, Solar Wind 10: Proceedings of the Tenth International Sola Wind Conference, Am. Inst. of Phys., New York, 513. DOI .

    Google Scholar 

  • Singh, N.: 2003, Space-time evolution of electron-beam driven electron holes and their effects on the plasma. Nonlinear Process. Geophys. 10, 53. DOI .

    Article  ADS  Google Scholar 

  • Singh, S.V., Reddy, R.V., Lakhina, G.S.: 2001, Broadband electrostatic noise due to nonlinear electron-acoustic waves. Adv. Space Res. 28, 1643. DOI .

    Article  ADS  Google Scholar 

  • Singh, S.V., Lakhina, G.S., Bharuthram, R., Pillay, S.R.: 2011, Electrostatic solitary structures in presence of non-thermal electrons and a warm electron beam on the auroral field lines. Phys. Plasmas 18, 122306. DOI .

    Article  ADS  Google Scholar 

  • Singh, S.V., Devanandhan, S., Lakhina, G.S., Bharuthram, R.: 2013, Effect of ion temperature on ion-acoustic solitary waves in a magnetized plasma in presence of superthermal electrons. Phys. Plasmas 20, 012306. DOI .

    Article  ADS  Google Scholar 

  • Steinberg, J.T., Lazaras, A.J., Ogilvie, K.W., Lepping, R., Byrnes, J.: 1996, Differential flow between solar wind protons and alpha particles: first wind observations. Geophys. Res. Lett. 23, 1183. DOI .

    Article  ADS  Google Scholar 

  • Temerin, M., Cerny, K., Lotko, W., Mozer, F.S.: 1982, Observations of double layers and solitary waves in the auroral plasma. Phys. Rev. Lett. 48, 1175. DOI .

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Arballo, J.K., Lakhina, G.S., Ho, C.M., Buti, B., Pickett, J.S., Gurnett, D.A.: 1998, Plasma waves in the dayside polar cap boundary layer: bipolar and monopolar electric pulses and whistler mode waves. Geophys. Res. Lett. 25, 4117. DOI .

    Article  ADS  Google Scholar 

  • Washimi, H., Taniuti, T.: 1966, Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 996. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

GSL thanks the National Academy of Sciences, India for the support under the NASI-Senior Scientist Platinum Jubilee Fellowship Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Lakhina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakhina, G.S., Singh, S.V. Generation of Weak Double Layers and Low-Frequency Electrostatic Waves in the Solar Wind. Sol Phys 290, 3033–3049 (2015). https://doi.org/10.1007/s11207-015-0773-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0773-1

Keywords

Navigation