Skip to main content
Log in

Implications of Non-cylindrical Flux Ropes for Magnetic Cloud Reconstruction Techniques and the Interpretation of Double Flux Rope Events

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) which exhibit signatures consistent with a magnetic flux rope structure. Techniques for reconstructing flux rope orientation from single-point in situ observations typically assume the flux rope is locally cylindrical, e.g., minimum variance analysis (MVA) and force-free flux rope (FFFR) fitting. In this study, we outline a non-cylindrical magnetic flux rope model, in which the flux rope radius and axial curvature can both vary along the length of the axis. This model is not necessarily intended to represent the global structure of MCs, but it can be used to quantify the error in MC reconstruction resulting from the cylindrical approximation. When the local flux rope axis is approximately perpendicular to the heliocentric radial direction, which is also the effective spacecraft trajectory through a magnetic cloud, the error in using cylindrical reconstruction methods is relatively small (≈ 10). However, as the local axis orientation becomes increasingly aligned with the radial direction, the spacecraft trajectory may pass close to the axis at two separate locations. This results in a magnetic field time series which deviates significantly from encounters with a force-free flux rope, and consequently the error in the axis orientation derived from cylindrical reconstructions can be as much as 90. Such two-axis encounters can result in an apparent ‘double flux rope’ signature in the magnetic field time series, sometimes observed in spacecraft data. Analysing each axis encounter independently produces reasonably accurate axis orientations with MVA, but larger errors with FFFR fitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Bothmer, V., Schwenn, R.: 1998, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys. 16, 1 – 24.

    Article  ADS  Google Scholar 

  • Burlaga, L.F.: 1988, Magnetic clouds: Constant alpha force-free configurations. J. Geophys. Res. 93, 7217 – 7224.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673 – 6684.

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G.: 2003, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996 – 2002. J. Geophys. Res. 108, 1156. doi: 10.1029/2002JA009817 .

    Article  Google Scholar 

  • Cremades, H., Bothmer, V.: 2004, On the three-dimensional configuration of coronal mass ejections. Astron. Astrophys. 422, 307 – 322. doi: 10.1051/0004-6361:20035776 .

    Article  ADS  Google Scholar 

  • Dungey, J.W.: 1961, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47.

    Article  ADS  Google Scholar 

  • Farrugia, C.J., Osherovich, V.A., Burlaga, L.F.: 1995, Magnetic flux rope versus the spheromak as models for interplanetary magnetic clouds. J. Geophys. Res. 100, 12293. doi: 10.1029/95JA00272 .

    Article  ADS  Google Scholar 

  • Gosling, J.T.: 1993, The solar flare myth. J. Geophys. Res. 98, 18937 – 18950. doi: 10.1029/93JA01896 .

    Article  ADS  Google Scholar 

  • Gosling, J.T., Baker, D.N., Bame, S.J., Feldman, W.C., Zwickl, R.D.: 1987, Bidirectional solar wind electron heat flux events. J. Geophys. Res. 92, 8519 – 8535.

    Article  ADS  Google Scholar 

  • Gulisano, A.M., Dasso, S., Mandrini, C.H., Démoulin, P.: 2007, Estimation of the bias of the minimum variance technique in the determination of magnetic clouds global quantities and orientation. Adv. Space Res. 40, 1881 – 1890. doi: 10.1016/j.asr.2007.09.001 .

    Article  ADS  Google Scholar 

  • Hidalgo, M.A., Cid, C., Vinas, A.F., Sequeiros, J.: 2002, A non-force-free approach to the topology of magnetic clouds. J. Geophys. Res. 107, 1002 – 1009. doi: 10.1029/2001JA900100 .

    Article  Google Scholar 

  • Hu, Q., Sonnerup, B.U.O.: 2001, Reconstruction of magnetic flux ropes in the solar wind. Geophys. Res. Lett. 28, 1443.

    Article  Google Scholar 

  • Hundhausen, A.J.: 1993, Sizes and locations of coronal mass ejections – SMM observations from 1980 and 1984 – 1989. J. Geophys. Res. 98, 13177 – 13200.

    Article  ADS  Google Scholar 

  • Klein, L.W., Burlaga, L.F.: 1982, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 87, 613 – 624.

    Article  ADS  Google Scholar 

  • Lavraud, B., Borovsky, J.E.: 2008, Altered solar wind-magnetosphere interaction at low Mach numbers: Coronal mass ejections. J. Geophys. Res. 113, A00B08. doi: 10.1029/2008JA013192 .

    Article  Google Scholar 

  • Lavraud, B., Owens, M.J., Rouillard, A.P.: 2011, In situ signatures of interchange reconnection between magnetic clouds and open magnetic fields: A mechanism for the erosion of polar coronal holes? Solar Phys. 270, 285 – 296. doi: 10.1007/s11207-011-9717-6 .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Jones, J.A., Burlaga, L.F.: 1990, Magnetic field structure of interplanetary clouds at 1 AU. J. Geophys. Res. 95, 11957 – 11965.

    Article  ADS  Google Scholar 

  • Lynch, B.J., Gruesbeck, J.R., Zurbuchen, T.H., Antiochos, S.K.: 2005, Solar cycle dependent helicity transport by magnetic clouds. J. Geophys. Res. 110, A08107. doi: 10.1029/2005JA011137 .

    Article  Google Scholar 

  • Marubashi, K., Lepping, R.P.: 2007, Long-duration magnetic clouds: A comparison of analyses using torus- and cylinder-shaped flux rope models. Ann. Geophys. 25, 2453 – 2477. doi: 10.5194/angeo-25-2453-2007 .

    Article  ADS  Google Scholar 

  • Mulligan, T., Russell, C.T.: 2001, Mulitspacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: Cylindrical symmetric versus nonsymmetric topologies. J. Geophys. Res. 106, 10581 – 10596.

    Article  ADS  Google Scholar 

  • Owens, M.J.: 2008, Combining remote and in situ observations of coronal mass ejections to better constrain magnetic cloud reconstruction. J. Geophys. Res. 113, A12102. doi: 10.1029/2008JA013589 .

    Article  ADS  Google Scholar 

  • Owens, M.J., Cargill, P.J.: 2004, Non-radial solar wind flows induced by the motion of interplanetary coronal mass ejections. Ann. Geophys. 22, 4395 – 4397.

    ADS  Google Scholar 

  • Owens, M.J., Crooker, N.U., Horbury, T.S.: 2009, The expected imprint of flux rope geometry on suprathermal electrons in magnetic clouds. Ann. Geophys. 27, 4057 – 4067. doi: 10.5194/angeo-27-4057-2009 .

    Article  ADS  Google Scholar 

  • Owens, M.J., Merkin, V.G., Riley, P.: 2006, A kinematically distorted flux rope model for magnetic clouds. J. Geophys. Res. 111, A03104. doi: 10.1029/2005JA011460 .

    Article  Google Scholar 

  • Owens, M.J., Schwadron, N.A., Crooker, N.U., Hughes, W.J., Spence, H.E.: 2007, Role of coronal mass ejections in the heliospheric Hale cycle. Geophys. Res. Lett. 34, L06104. doi: 10.1029/2006GL028795 .

    Article  Google Scholar 

  • Rees, A., Forsyth, R.J.: 2004, Two examples of magnetic clouds with double rotations observed by the Ulysses spacecraft. Geophys. Res. Lett. 31, L06804. doi: 10.1029/2003GL018330 .

    Article  Google Scholar 

  • Riley, P., Crooker, N.U.: 2004, Kinematic treatment of CME evolution in the solar wind. Astrophys. J. 600, 1035 – 1042.

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Lionello, R., Mikic, Z., Odstrcil, D., Hidalgo, M.A., Hu, Q., Lepping, R.P., Lynch, B.J., Rees, A.: 2004, Fitting flux-ropes to a global MHD solution: A comparison of techniques. J. Atmos. Solar-Terr. Phys. 66, 1321 – 1332.

    Article  ADS  Google Scholar 

  • Romashets, E., Vandas, M.: 2009, Linear force-free field of a toroidal symmetry. Astron. Astrophys. 499, 17 – 20. doi: 10.1051/0004-6361/200911701 .

    Article  ADS  MATH  Google Scholar 

  • Russell, C.T., Mulligan, T.: 2002, On the magnetosheath thicknesses of interplanetary coronal mass ejections. Planet. Space Sci. 50, 527 – 534.

    Article  ADS  Google Scholar 

  • Savani, N.P., Owens, M.J., Rouillard, A.P., Forsyth, R.J., Davies, J.A.: 2010, Observational evidence of a coronal mass ejection distortion directly attributable to a structured solar wind. Astrophys. J. Lett. 714, L128 – L132. doi: 10.1088/2041-8205/714/1/L128 .

    Article  ADS  Google Scholar 

  • Sonnerup, B.U.O., Cahill, L.J.: 1967, Magnetopause structure and attitude from Explorer 12 observations. J. Geophys. Res. 72, 171.

    Article  ADS  Google Scholar 

  • Vandas, M., Romashets, E.P.: 2003, A force-free field with constant alpha in an oblate cylinder: A generalization of the Lundquist solution. Astron. Astrophys. 398, 801 – 807. doi: 10.1051/0004-6361:20021691 .

    Article  ADS  Google Scholar 

  • Vandas, M., Fischer, S., Geranios, A.: 1991, Spherical and cylindrical models of magnetized plasma clouds and their comparison with spacecraft data. Planet. Space Sci. 39, 1147 – 1154. doi: 10.1016/0032-0633(91)90166-8 .

    Article  ADS  Google Scholar 

  • Vandas, M., Fischer, S., Dryer, M., Smith, Z., Detman, T.: 1998, Propagation of a spheromak 2. Three-dimensional structure of a spheromak. J. Geophys. Res. 103, 23717 – 23726. doi: 10.1029/98JA01902 .

    Article  ADS  Google Scholar 

  • Wang, Y., Zhou, G., Ye, P., Wang, S., Wang, J.: 2006, A study of the orientation of interplanetary magnetic clouds and solar filaments. Astrophys. J. 651, 1245 – 1255. doi: 10.1086/507668 .

    Article  ADS  Google Scholar 

  • Wimmer-Schweingruber, R.F., Crooker, N.U., Balogh, A., Bothmer, V., Forsyth, R.J., Gazis, P., Gosling, J.T., Horbury, T., Kilchmann, A., Richardson, I.G., Riley, P., Rodriguez, L., von Steiger, R., Wurz, P., Zurbuchen, T.H.: 2006, Understanding interplanetary coronal mass ejection signatures. Space Sci. Rev. 123, 177 – 216. doi: 10.1007/s11214-006-9017-x .

    ADS  Google Scholar 

  • Yamamoto, T.T., Kataoka, R., Inoue, S.: 2010, Helical lengths of magnetic clouds from the magnetic flux conservation. Astrophys. J. 710, 456 – 461. doi: 10.1088/0004-637X/710/1/456 .

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Owens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owens, M.J., Démoulin, P., Savani, N.P. et al. Implications of Non-cylindrical Flux Ropes for Magnetic Cloud Reconstruction Techniques and the Interpretation of Double Flux Rope Events. Sol Phys 278, 435–446 (2012). https://doi.org/10.1007/s11207-012-9939-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-9939-2

Keywords

Navigation